Soliton Dynamics for Non-Linear Wave Equations
非线性波动方程的孤子动力学
基本信息
- 批准号:1954455
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The natural world is governed by wave equations: the electricity on a circuit board, the light in fiber optic cables, and even the black hole in the center of the galaxy all propagate by wave dynamics. Though ubiquitous, wave-type equations are far from well understood. The goal of this project is to understand how waves are affected by interference with themselves or with their environment. The research seeks to learn when and why some waves disperse, other waves persist, and still others collapse. Knowing how waves behave drives technological progress - smaller microchips, faster data transmission, and deeper insights into the formation of the universe. The project provides research training opportunities for graduate students.The investigator will study nonlinear wave equations that admit topological solitons, which are used to model the physical phenomena described above. Technically, these are coherent solitary waves with a nontrivial topological invariant. Canonical examples include kinks in scalar field theories, harmonic maps as stationary wave maps, vortices in gauged Ginzburg-Landau theory, magnetic monopoles, Skyrmions, and Yang-Mills instantons. The goal is to understand how topological solitons influence the dynamics, and to resolve two long-standing, open questions. First, the investigator will try to prove that nonlinear waves can be uniquely continued past a singularity that develops in finite time by concentrating energy (bubbling) in a soliton. Second, the investigator seeks to show that multi-soliton collisions are necessarily inelastic for non-integrable wave equations such as the phi-4 scalar field model and the wave maps equation. Crucial parts of this program are existence and uniqueness proofs of solutions exhibiting finite time bubbling and global-in-time multi-soliton dynamics. The techniques the investigator is developing to address these problems will be useful in other related contexts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自然界是由波动方程支配的:电路板上的电流,光纤电缆中的光,甚至银河系中心的黑洞都是通过波动动力学传播的。虽然波型方程无处不在,但人们对它的理解还远远不够。这个项目的目标是了解波是如何受到自身或环境干扰的影响的。这项研究试图了解一些海浪何时以及为什么消散,另一些海浪持续存在,还有一些海浪崩溃。了解波的行为推动了技术进步--更小的微芯片,更快的数据传输,以及对宇宙形成的更深入的洞察。该项目为研究生提供了研究培训的机会。研究人员将研究允许拓扑孤子的非线性波动方程,这些方程被用来模拟上述物理现象。从技术上讲,这些是具有非平凡拓扑不变量的相干孤立波。典型的例子包括标量场论中的扭结、作为驻波映射的调和映射、规范Ginzburg-Landau理论中的涡旋、磁单极子、Skyrmions和Yang-Mills瞬子。我们的目标是了解拓扑孤子如何影响动力学,并解决两个长期悬而未决的问题。首先,研究人员将试图证明,通过在孤子中集中能量(起泡),非线性波可以唯一地继续通过在有限时间内发展的奇点。其次,对于非可积波动方程,如Phi-4标量场模型和波动映射方程,证明了多孤子碰撞必然是非弹性的。本程序的关键部分是有限时间泡沫解和全局时间多孤子动力学解的存在唯一性证明。研究人员正在开发的解决这些问题的技术将在其他相关情况下有用。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Lawrie其他文献
Localized Sequential Bubbling for the Radial Energy Critical Semilinear Heat Equation
径向能量临界半线性热方程的局部顺序冒泡
- DOI:
10.1007/s10013-023-00648-w - 发表时间:
2023 - 期刊:
- 影响因子:0.8
- 作者:
Andrew Lawrie - 通讯作者:
Andrew Lawrie
Applications of ultrasonic NDT to aerospace composites
超声无损检测在航空航天复合材料中的应用
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Robert A. Smith;S. Mukhopadhyay;Andrew Lawrie;Stephen R. Hallett - 通讯作者:
Stephen R. Hallett
Andrew Lawrie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Lawrie', 18)}}的其他基金
Multi-soliton Dynamics for Dispersive Partial Differential Equations
色散偏微分方程的多孤子动力学
- 批准号:
2247290 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Dynamics of Nonlinear Wave Equations
非线性波动方程的动力学
- 批准号:
1700127 - 财政年份:2017
- 资助金额:
$ 24.9万 - 项目类别:
Continuing Grant
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
RII Track-4:@NASA: Methane Dynamics Described Through the Fusion of Site and Satellite Data in Bottomland Hardwood Forested and Non-forested Wetlands
RII Track-4:@NASA:通过融合洼地硬木森林和非森林湿地的现场和卫星数据描述甲烷动力学
- 批准号:
2327374 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Taming Non-Perturbative Dynamics in High Energy Physics
驾驭高能物理中的非微扰动力学
- 批准号:
2310243 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Continuing Grant
Genetically-Encoded, Non-Invasive and Wireless Modulation of Calcium Dynamics in Astrocytes With Spatiotemporal Precision and Depth
具有时空精度和深度的星形胶质细胞钙动态的基因编码、非侵入性无线调节
- 批准号:
10562265 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
The significance of nominally non-responsive neural dynamics in auditory perception and behavior
名义上无反应的神经动力学在听觉感知和行为中的意义
- 批准号:
10677342 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Basic research for understanding the environmental dynamics and control of non-tuberculous Mycobacterium in water treatment plants
了解水处理厂中非结核分枝杆菌的环境动态和控制的基础研究
- 批准号:
23H03150 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
BRITE Pivot: Emergent Mechanics and Non-Hermitian Dynamics of Odd Elastic Solids
BRITE Pivot:奇数弹性固体的涌现力学和非厄米动力学
- 批准号:
2227474 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
CAREER: Simulating Mesoscale Quantum Dynamics and Non-linear Microscopy
职业:模拟中尺度量子动力学和非线性显微镜
- 批准号:
2341178 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Continuing Grant
Non-perturbative dynamics of chiral gauge theories
手性规范理论的非微扰动力学
- 批准号:
23K03382 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation of universal non-equilibrium dynamics using coupled 2-D quantum systems
使用耦合二维量子系统研究普遍非平衡动力学
- 批准号:
EP/X024601/1 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
ExpandQISE: Track 1: Analog quantum simulation of non-Markovian dynamics of multi-qubit systems
ExpandQISE:轨道 1:多量子位系统非马尔可夫动力学的模拟量子模拟
- 批准号:
2328948 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant














{{item.name}}会员




