Quantum Dynamics of Soliton-Pair Creation in Quasi-One-Dimensional Halogen-Bridged metal Complexes
准一维卤桥金属配合物中孤子对产生的量子动力学
基本信息
- 批准号:10640319
- 负责人:
- 金额:$ 2.05万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project we have estimated the probability of the non-radiative transition from the relaxed state (confined soliton and antisoliton) in the first excited state to the ground state, in the framework of a non-degenerate charge-density-wave(CDW) model.All through this project, the main problem has been how to incorporate modes of phonons which are ruling the degree of non-adiabatic transitions. In the first year, we only treated the relative coordinate between the soliton and the antisoliton to find that the obtained probability was very small and so the selection was not enough. By detailed analysis, we clarified that the reason was the lack of long-wave phonons which are very closely related to the concerned transition. Therefore we tackled with the problem of how to include such many modes, in the second year.As the first method, we have added the amplitude of a deformation localized around the solitons as the second mode. Here the deformation is prepared to consist mainly of the modes close to k=0. Thus the purpose of this method is to check the prediction in the first year. As a result, the probability drastically increases to give the life time of about 8.6 ns for a certain parameter set. (Cf : it was about 12 ms in the case of one-coordinate treatment)Next, we have included cosine-type modes, instead of the localized mode. Such modes are added from the k=o one in increasing order. Fortunately, modes with different wave numbers can be treated almost independently. Thus, their contributions become additive without any interference with each other. In this situation, we have increased the number of modes from 1 to 40 in the system with 200 sites. As a result, the probability almost reaches to saturation at the number of 25. Finally, we have obtained the value of 110 ps as the life time, which is consistent with the result by the semi-classical method, namely, 80 ps.
在这个项目中,我们在非简并电荷密度波(CDW)模型的框架内估计了从第一激发态的松弛态(受限孤子和反孤子)到基态的非辐射跃迁的概率。在这个项目中,主要问题是如何合并决定非绝热跃迁程度的声子模式。第一年,我们只处理了孤子和反孤子之间的相对坐标,发现得到的概率很小,所以选择不够。通过详细分析,我们明确了原因是缺乏与跃迁密切相关的长波声子。因此,我们在第二年解决了如何包含如此多的模态的问题。作为第一种方法,我们添加了孤子周围局部变形的幅度作为第二模态。这里准备的变形主要由接近 k=0 的模式组成。因此,该方法的目的是检查第一年的预测。因此,某个参数集的寿命达到约 8.6 ns 的概率急剧增加。 (cf:在单坐标处理的情况下约为 12 ms)接下来,我们包括余弦型模式,而不是局部模式。这些模式是从 k=o 模式开始按升序添加的。幸运的是,具有不同波数的模式几乎可以独立处理。因此,它们的贡献可以累加,彼此之间不会产生任何干扰。在这种情况下,我们在200个站点的系统中将模式数量从1种增加到40种。结果,在数量为25时,概率几乎达到饱和。最终,我们得到了110 ps作为寿命值,这与半经典方法的结果一致,即80 ps。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
岩野薫 他: "Nonlinear excitations in charge - and spin-density-waul materials - Excitons, selitons and (bi) polarons"Synthetic Metals. 103. 2620-2623 (1999)
Kaoru Iwano 等人:“电荷和自旋密度波材料中的非线性激发 - 激子、孤子和(双)极化子”合成金属。 103. 2620-2623 (1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Iwano: ""Mechanism for photoinduced phase transitions in low-dimensional electron-lattice systems : Nonlinearity with respect to excitation density and aggregation of excited domains""Phys. Rev. b. 61-1. 279-289 (2000)
K.Iwano:“低维电子晶格系统中光致相变的机制:关于激发密度和激发域聚集的非线性”“Phys。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Iwano: ""A possible mechanism for photoinduced structural phase transitions in low-dimensional electron-lattice systems""J. Lumin. (in press).
K.Iwano:“低维电子晶格系统中光致结构相变的可能机制”,J.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
岩野薫: "Mechanism for photo induced phase transitions in low-dimensional electron-lattice systems : Nonlinearity which respect to excitation density and aggregation of excited domains."Phy. Rev. B. 61. 279-289 (2000)
Kaoru Iwano:“低维电子晶格系统中光致相变的机制:与激发密度和激发域聚集相关的非线性。”Phy. Rev. B. 61. 279-289 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
岩野薫: "α possible mechanism for photo induced structural phase transitions in low-dimensional electron-lattice systems"J. Lumin.. in press.
Kaoru Iwano:“低维电子晶格系统中光诱导结构相变的 α 可能机制”J. Lumin.. 正在出版。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
IWANO Kaoru其他文献
IWANO Kaoru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('IWANO Kaoru', 18)}}的其他基金
Is ice in ambient pressure really ordered under 72K? - Modern theoretical approach
常压下的冰真的在72K以下订购吗?
- 批准号:
22540342 - 财政年份:2010
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spectral Anomaly and Ultrafast Phenomena in Photoinduced Phase Transition Systems
光致相变系统中的光谱异常和超快现象
- 批准号:
19540350 - 财政年份:2007
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ground states and thermally and optically excited states in quasi-one-dimensional halogen-bridged Pd/Ni mixed-metal complexes
准一维卤素桥联Pd/Ni混合金属配合物中的基态以及热激发态和光激发态
- 批准号:
13640339 - 财政年份:2001
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
黎曼流形上的Ricci Soliton及几何结构研究
- 批准号:11401179
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
Witten Laplacian的特征值及与其相关的Ricci Soliton研究
- 批准号:11371018
- 批准年份:2013
- 资助金额:56.0 万元
- 项目类别:面上项目
Ricci soliton 几何性质的研究
- 批准号:11226081
- 批准年份:2012
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
曲率流下soliton的几何性质与应用
- 批准号:11126204
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
约瑟夫逊结传输线中的孤子(soliton)研究
- 批准号:18670744
- 批准年份:1986
- 资助金额:4.0 万元
- 项目类别:面上项目
相似海外基金
High-energy short-wavelength infrared soliton dynamics and sub-cycle strong-field physics
高能短波红外孤子动力学与亚周期强场物理
- 批准号:
EP/Z001250/1 - 财政年份:2024
- 资助金额:
$ 2.05万 - 项目类别:
Fellowship
Analysis of Regular and Random Soliton Gases in Integrable Dispersive Partial Differential Equations.
可积色散偏微分方程中规则和随机孤子气体的分析。
- 批准号:
2307142 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Standard Grant
Application of high-speed flame propagation mechanism by vortex filament soliton to hydrogen and ammonia combustion fields toward decarbonization
涡丝孤子高速火焰传播机制在氢氨燃烧领域的脱碳应用
- 批准号:
23K03687 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multi-soliton Dynamics for Dispersive Partial Differential Equations
色散偏微分方程的多孤子动力学
- 批准号:
2247290 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Standard Grant
Nonlinear acoustic theory toward a transform of shock to soliton in liquids by microbubbles
非线性声学理论通过微泡将液体中的激波转换为孤子
- 批准号:
22K03898 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Microbubble resonator dispersion engineering for blue-band soliton comb generation
用于蓝带孤子梳生成的微泡谐振器色散工程
- 批准号:
22K14621 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Soliton gas at the crossroads of dispersive and generalised hydrodynamics
孤子气体处于色散和广义流体动力学的十字路口
- 批准号:
EP/W032759/1 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Research Grant
Workshop on Trends in Soliton Dynamics and Singularity Formation for Nonlinear Dispersive PDEs
非线性色散偏微分方程孤子动力学和奇点形成趋势研讨会
- 批准号:
2230164 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Standard Grant
Soliton Dynamics for Non-Linear Wave Equations
非线性波动方程的孤子动力学
- 批准号:
1954455 - 财政年份:2020
- 资助金额:
$ 2.05万 - 项目类别:
Continuing Grant
Breather and Soliton Gases for the Focusing Nonlinear Schrodinger Equation: Theoretical and Applied Aspects
用于聚焦非线性薛定谔方程的呼吸气体和孤子气体:理论和应用方面
- 批准号:
2009647 - 财政年份:2020
- 资助金额:
$ 2.05万 - 项目类别:
Continuing Grant