Collaborative Research: RI: Medium: Introspective Perception and Planning for Long-Term Autonomy
合作研究:RI:中:长期自治的内省感知和规划
基本信息
- 批准号:1954778
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Building and deploying autonomous service robots in real human environments has been a long-standing challenge in artificial intelligence and robotics. Such robots can assist humans in everyday activities and offer a transformational impact on society. In order to successfully realize their benefits, however, robots must be cognizant of their limitations, and when uncertain about an action, they must be able to ask for human assistance. When robots are deployed in novel environments, developers cannot fully foresee what errors the robots may make, what may be the root causes of such errors, how human confidence in the robots’ abilities may change as a result of such errors, and how well the robots may learn to autonomously overcome errors and reduce the reliance on human assistance. This project develops a comprehensive solution to these challenges by introducing competence-aware autonomy, enabling robots to learn what aspects of the environment, the situation, and the task lead to varying levels of success. When asking for human assistance, a competence-aware robot can offer evidence to explain its level of confidence. When left to act autonomously, a competence-aware robot can hypothesize contingency actions to help reduce its own uncertainty and to remain autonomous with high confidence. Consequently, the project transforms the ability of researchers and practitioners to deploy robots in unstructured environments where limited knowledge is available prior to deployment. This enables workers with limited robotics expertise to deploy robots more safely in unstructured environments and teach them over time to be progressively independent. The project team will also develop new course materials at UT Austin and UMass Amherst, mentor undergraduate student researchers with special attention to underrepresented groups, perform outreach activities to introduce programming with robots to grade school students, develop conference workshops and tutorials on integrated perception and planning research, and strengthen collaborations between academia and industry.The project addresses the need to build competency-aware systems by introducing approaches to satisfy six core properties of introspective perception and planning. They include: 1) an approach to autonomously supervise the training of introspective perception by relying on different types of consistency metrics; 2) an approach to learn to identify causal factors of perception errors by considering both local and global cues in sensed data; 3) an approach to analyze sequences of actions and observations from logs to learn the impact of actions on introspective perception; 4) an introspective planning approach that is cognizant of different levels of autonomy, each associated with certain restrictions on autonomous operation; 5) an introspective planning approach that is cognizant of the cost of different forms of human assistance and can learn to minimize the reliance on humans over time; and 6) an introspective planning approach that can learn from human feedback about negative side effects and can attempt to explain them and mitigate their impact. The project identifies key patterns of interaction between these different components to enable a robot to autonomously learn to plan around its limitations and minimize the reliance on humans. The team conducts a comprehensive evaluation consisting of individual part-based testing in high-fidelity simulation, and extensive real-world deployments of service mobile robots across the University of Texas at Austin and University of Massachusetts Amherst campuses, while performing key challenge tasks that directly support the facilities of both universities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在真实的人类环境中构建和部署自主服务机器人一直是人工智能和机器人技术领域的一个长期挑战。 这些机器人可以帮助人类进行日常活动,并对社会产生变革性的影响。 然而,为了成功地实现它们的好处,机器人必须认识到它们的局限性,当不确定某个行动时,它们必须能够寻求人类的帮助。 当机器人被部署在新的环境中时,开发人员无法完全预见机器人可能会犯什么错误,这些错误的根本原因是什么,人类对机器人能力的信心可能会因这些错误而改变,以及机器人可以学习如何自主克服错误并减少对人类帮助的依赖。 该项目通过引入能力感知的自主性,为这些挑战开发了一个全面的解决方案,使机器人能够学习环境,情况和任务的哪些方面导致不同程度的成功。 当请求人类帮助时,具有能力意识的机器人可以提供证据来解释其信心水平。 当自主行动时,能力感知机器人可以假设应急行动,以帮助减少自身的不确定性,并保持高度自信的自主性。 因此,该项目改变了研究人员和从业人员在部署前知识有限的非结构化环境中部署机器人的能力。 这使得机器人专业知识有限的工作人员能够在非结构化环境中更安全地部署机器人,并随着时间的推移教他们逐渐独立。 项目团队还将在UT Austin和UMass Amherst开发新的课程材料,指导本科生研究人员,特别关注代表性不足的群体,开展外展活动,向小学生介绍机器人编程,开发关于综合感知和规划研究的会议研讨会和教程,该项目通过引入满足内省感知和规划的六个核心特性的方法,解决了建立能力感知系统的需要。它们包括:1)通过依赖不同类型的一致性度量来自主监督内省感知训练的方法; 2)通过考虑感知数据中的局部和全局线索来学习识别感知错误的因果因素的方法; 3)分析动作序列和来自日志的观察以学习动作对内省感知的影响的方法; 4)认识到不同自主水平的内省规划方法,每个自主水平与自主操作的某些限制相关联; 5)认识到不同形式的人类协助的成本并且可以学习随着时间的推移最小化对人类的依赖的内省规划方法;以及6)内省的规划方法,其可以从关于负面副作用的人类反馈中学习,并且可以尝试解释它们并减轻它们的影响。 该项目确定了这些不同组件之间的关键交互模式,使机器人能够自主学习围绕其局限性进行规划,并最大限度地减少对人类的依赖。 该团队进行了全面的评估,包括高保真模拟中基于单个部件的测试,以及德克萨斯大学奥斯汀分校和马萨诸塞州阿默斯特大学校园内服务移动的机器人的广泛真实部署,同时执行直接支持两所大学设施的关键挑战任务。该奖项反映了NSF的法定使命,并通过使用基金会的学术价值和更广泛的影响审查标准。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Competence-Aware Path Planning Via Introspective Perception
通过内省感知进行能力意识路径规划
- DOI:10.1109/lra.2022.3145517
- 发表时间:2022
- 期刊:
- 影响因子:5.2
- 作者:Rabiee, Sadegh;Basich, Connor;Wray, Kyle Hollins;Zilberstein, Shlomo;Biswas, Joydeep
- 通讯作者:Biswas, Joydeep
Probabilistic Object Maps for Long-Term Robot Localization
- DOI:10.1109/iros47612.2022.9981316
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Amanda Adkins;Joydeep Biswas
- 通讯作者:Amanda Adkins;Joydeep Biswas
State Supervised Steering Function for Sampling-based Kinodynamic Planning
- DOI:10.5555/3535850.3535856
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:P. Atreya;Joydeep Biswas
- 通讯作者:P. Atreya;Joydeep Biswas
STEADY: Simultaneous State Estimation and Dynamics Learning from Indirect Observations
STEADY:从间接观察中同时进行状态估计和动力学学习
- DOI:10.1109/iros47612.2022.9981279
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Wei, Jiayi;Holtz, Jarrett;Dillig, Isil;Biswas, Joydeep
- 通讯作者:Biswas, Joydeep
IV-SLAM: Introspective Vision for Simultaneous Localization and Mapping
- DOI:
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:Sadegh Rabiee;Joydeep Biswas
- 通讯作者:Sadegh Rabiee;Joydeep Biswas
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joydeep Biswas其他文献
The Quest For "Always-On" Autonomous Mobile Robots
追求“永远在线”的自主移动机器人
- DOI:
10.24963/ijcai.2019/893 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Joydeep Biswas - 通讯作者:
Joydeep Biswas
Five Years of SSL-Vision - Impact and Development
SSL-Vision 五年 - 影响与发展
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
S. Zickler;Tim Laue;José Angelo Gurzoni;Oliver Birbach;Joydeep Biswas;M. Veloso - 通讯作者:
M. Veloso
SOCIALGYM 2.0: Simulator for Multi-Robot Learning and Navigation in Shared Human Spaces
SOCIALGYM 2.0:共享人类空间中的多机器人学习和导航模拟器
- DOI:
10.1609/aaai.v38i21.30562 - 发表时间:
2024 - 期刊:
- 影响因子:1.8
- 作者:
Rohan Chandra;Zayne Sprague;Joydeep Biswas - 通讯作者:
Joydeep Biswas
Learning to Optimize Autonomy in Competence-Aware Systems
学习优化能力感知系统中的自主性
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Connor Basich;Justin Svegliato;K. H. Wray;S. Witwicki;Joydeep Biswas;S. Zilberstein - 通讯作者:
S. Zilberstein
Competence-aware systems
能力感知系统
- DOI:
10.1016/j.artint.2022.103844 - 发表时间:
2023-03-01 - 期刊:
- 影响因子:4.600
- 作者:
Connor Basich;Justin Svegliato;Kyle H. Wray;Stefan Witwicki;Joydeep Biswas;Shlomo Zilberstein - 通讯作者:
Shlomo Zilberstein
Joydeep Biswas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joydeep Biswas', 18)}}的其他基金
CAREER: Robust Perception and Customization for Long-Term Autonomous Mobile Service Robots
职业:长期自主移动服务机器人的鲁棒感知和定制
- 批准号:
2046955 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Interactive Synthesis and Repair For Robot Programs
合作研究:SHF:小型:机器人程序的交互式合成和修复
- 批准号:
2006404 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312841 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312842 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
- 批准号:
2313131 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313151 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
- 批准号:
2232298 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312840 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
- 批准号:
2345528 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
- 批准号:
2232055 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313149 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312374 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant