Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
基本信息
- 批准号:2345528
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the last two decades, artificial intelligence has achieved remarkable progress in a variety of disciplines such as computer vision and natural language understanding. This project aims at leveraging robust artificial intelligence for transforming the electrical power grid, the largest machine built by humankind. Indeed, the integration of substantial renewable resources in power generation raises substantial computational challenges and, in particular, the solving of complex optimization problems with increased frequency. The project proposes a new paradigm, Deep Constrained Learning, to solve these large-scale optimization problems in real time, while ensuring efficient and reliable grid operations. If successful, the project may fundamentally transform how the grid is operated and bring significant economic and environmental benefits. While the development of Deep Constrained Learning is grounded in energy applications, the project findings may generalize to a broader class of engineering applications with hard physical or operational constraints.From a scientific standpoint, Deep Constrained Learning (DCL) is a tight integration of machine learning and optimization that delivers, in real time, reliable near-optimal solutions to large-scale nonconvex optimization problems. The project contributes to new scientific and engineering knowledge along two directions. It first demonstrates how DCL provides a principled way to accommodate hard constraints in deep learning by combining key methodologies from optimization into the training cycle of deep neural networks. Second, it shows how to exploit domain knowledge for model reduction, allowing DCL to handle the size and complexity of real power grids.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的二十年里,人工智能在计算机视觉和自然语言理解等多个学科取得了显着进展。该项目旨在利用强大的人工智能来改造人类建造的最大机器电网。事实上,在发电中大量可再生资源的整合提出了大量的计算挑战,特别是解决复杂的优化问题的频率增加。该项目提出了一种新的范式,深度约束学习,以解决这些大规模的优化问题,在真实的时间,同时确保高效和可靠的网格操作。如果成功,该项目可能从根本上改变电网的运营方式,并带来显著的经济和环境效益。深度约束学习(Deep Constrained Learning,DCL)是机器学习和优化的紧密结合,能够在真实的时间内为大规模非凸优化问题提供可靠的接近最优的解决方案。该项目有助于新的科学和工程知识沿着两个方向。它首先展示了DCL如何通过将优化的关键方法结合到深度神经网络的训练周期中,提供一种原则性的方法来适应深度学习中的硬约束。其次,它展示了如何利用领域知识进行模型简化,使DCL能够处理真实的电网的规模和复杂性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Analysis of the Reliability of AC Optimal Power Flow Deep Learning Proxies
交流最优潮流深度学习代理的可靠性分析
- DOI:10.1109/isgt-la56058.2023.10328223
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Dinh, My H.;Fioretto, Ferdinando;Mohammadian, Mostafa;Baker, Kyri
- 通讯作者:Baker, Kyri
Price-Aware Deep Learning for Electricity Markets
电力市场的价格感知深度学习
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Dvorkin, Vladimir;Fioretto, Ferdinando
- 通讯作者:Fioretto, Ferdinando
Learning Fair Ranking Policies via Differentiable Optimization of Ordered Weighted Averages
通过有序加权平均值的可微优化来学习公平排名策略
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Dinh, My H.;Kotary, James;Fioretto, Ferdinando
- 通讯作者:Fioretto, Ferdinando
End-to-End Learning for Fair Multiobjective Optimization Under Uncertainty
不确定性下公平多目标优化的端到端学习
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Dinh, My H;Kotary, James;Fioretto, Ferdinando
- 通讯作者:Fioretto, Ferdinando
Analyzing and Enhancing the Backward-Pass Convergence of Unrolled Optimization
分析和增强展开优化的后向收敛性
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Kotary, James;Christopher, Jacob;Dinh, My H;Fioretto, Ferdinando
- 通讯作者:Fioretto, Ferdinando
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ferdinando Fioretto其他文献
Solving DCOPs with Distributed Large Neighborhood Search
通过分布式大邻域搜索解决 DCOP
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Ferdinando Fioretto;A. Dovier;Enrico Pontelli;W. Yeoh;R. Zivan - 通讯作者:
R. Zivan
Constrained-Based Differential Privacy: Releasing Optimal Power Flow Benchmarks Privately - Releasing Optimal Power Flow Benchmarks Privately
基于约束的差分隐私:私下发布最优潮流基准 - 私下发布最优潮流基准
- DOI:
10.1007/978-3-319-93031-2_15 - 发表时间:
2018 - 期刊:
- 影响因子:6.6
- 作者:
Ferdinando Fioretto;Pascal Van Hentenryck - 通讯作者:
Pascal Van Hentenryck
Personalized Privacy Auditing and Optimization at Test Time
测试时的个性化隐私审核和优化
- DOI:
10.48550/arxiv.2302.00077 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Cuong Tran;Ferdinando Fioretto - 通讯作者:
Ferdinando Fioretto
A Large Neighboring Search Schema for Multi-agent Optimization
用于多智能体优化的大型邻近搜索模式
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Khoi D. Hoang;Ferdinando Fioretto;W. Yeoh;Enrico Pontelli;R. Zivan - 通讯作者:
R. Zivan
Proactive Dynamic DCOPs
主动动态 DCOP
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Khoi Hoang;Ferdinando Fioretto;Ping Hou;Makoto Yokoo;William Yeoh;Roie Zivan - 通讯作者:
Roie Zivan
Ferdinando Fioretto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ferdinando Fioretto', 18)}}的其他基金
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
- 批准号:
2232054 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Travel: Doctoral Consortium at the 22nd International Conference on Autonomous Agents and Multiagent Systems
旅行:博士联盟出席第 22 届自主代理和多代理系统国际会议
- 批准号:
2246464 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Privacy and Fairness in Critical Decision Making
协作研究:SaTC:核心:小型:关键决策中的隐私和公平
- 批准号:
2345483 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Physics Informed Real-time Optimal Power Flow
合作研究:基于物理的实时最佳潮流
- 批准号:
2334448 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Travel: Doctoral Consortium at the 22nd International Conference on Autonomous Agents and Multiagent Systems
旅行:博士联盟出席第 22 届自主代理和多代理系统国际会议
- 批准号:
2334707 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: End-to-end Constrained Optimization Learning
职业:端到端约束优化学习
- 批准号:
2401285 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: Physics Informed Real-time Optimal Power Flow
合作研究:基于物理的实时最佳潮流
- 批准号:
2242931 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
- 批准号:
2334936 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: End-to-end Constrained Optimization Learning
职业:端到端约束优化学习
- 批准号:
2143706 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Privacy and Fairness in Critical Decision Making
协作研究:SaTC:核心:小型:关键决策中的隐私和公平
- 批准号:
2133169 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312841 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312842 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
- 批准号:
2313131 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313151 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
- 批准号:
2232298 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312840 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312374 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312373 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
- 批准号:
2232055 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313149 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant