Excellence in Research: Harnessing Microbial Signals for Biofilm Control
卓越的研究:利用微生物信号进行生物膜控制
基本信息
- 批准号:1955034
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Urbanization increases the need to treat wastewater. In the United States, this demand is typically met by treating water in water resource recovery facilities (WRRFs). Many WRRFs employ attached growth biofilm reactors where beneficial microorganisms grow in a thin layer on solid surfaces. Biofilm reactors are well suited for crowded urban locations because they can increase WRRF treatment efficiency without increasing space demands. Biofilm reactors operate most efficiently under a narrow set of conditions. If the biofilm is too thick, microorganisms will grow slower, thus decreasing process efficiency. The goal of this research is to develop ways to control biofilms by measuring signaling molecules produced by the microorganisms. This information will be used to develop a biofilm control strategy for treatment optimization. The results of this research will shed light on microbial signaling systems in wastewater treatment. This knowledge will also help understand how to control other biofilm systems in medical devices, on our teeth, and in other systems. Benefits to society resulting from this project include education and outreach on wastewater treatment to local K-12 schools and the education of underrepresented students at Howard University, thus increasing the diversity and scientific literacy of the Nation’s STEM workforce.Attached growth biofilm reactors are ideally suited for the urban water resource recovery facilities (WRRFs) because the rate of treatment can increase without a corresponding expansion in reactor size. Additional potential benefits of biofilms reactors include improved process stability and retention of slow growing organisms in the system. Efficient operation of biofilm reactors requires control of biofilm thickness and function. Microbial communities in biofilms use chemical signaling molecules to coordinate community function. While microbial signaling molecules were discovered decades ago, the ability to control expression of these molecules in the environment is still poorly understood. The goal of this research is to harness various forms of microbial communication signals to control biofilm systems. This will be achieved by: (1) determining the type and abundance of signaling molecules in full-scale WRRFs; (2) establishing a signaling molecule biofilm control strategy in pure culture biofilms; and (3) implementing this signaling molecule based control strategy in environmentally relevant mixed biofilm cultures. High throughput sequencing analysis of WRRF microbial communities will be used to determine the genetic potential for different signaling systems. Signaling molecules will also be measured in existing WRRFs in the Washington, DC region operating distinct process configurations. Studies of full-scale WRRFs will inform strategies for using signaling molecules for biofilm control in pure culture biofilms and in a lab-scale mixed culture nitrifying biofilm. The implications of this research will extend beyond WRRFs and offer potential benefits to drinking water distribution systems and hospital environments, where biofilm management is necessary to protect public health. Research results will be integrated into existing K-12 outreach activities. This research will support female and underrepresented graduate and undergraduate students from Howard University and will benefit an early career PI that is committed to creating opportunities for underrepresented groups to learn about microbiology and environmental engineering.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
城市化增加了对废水处理的需求。在美国,这种需求通常通过在水资源回收设施(WRRF)中处理水来满足。许多WRRF采用附着生长生物膜反应器,其中有益微生物在固体表面上以薄层生长。 生物膜反应器非常适合拥挤的城市地区,因为它们可以在不增加空间需求的情况下提高WRRF处理效率。生物膜反应器在一组狭窄的条件下最有效地运行。如果生物膜太厚,微生物将生长较慢,从而降低工艺效率。本研究的目标是通过测量微生物产生的信号分子来开发控制生物膜的方法。这些信息将用于开发生物膜控制策略,以优化处理。这项研究的结果将有助于了解废水处理中的微生物信号系统。这些知识也将有助于了解如何控制医疗器械、牙齿和其他系统中的其他生物膜系统。该项目给社会带来的好处包括对当地K-12学校的废水处理教育和宣传,以及对霍华德大学代表性不足的学生的教育,从而提高了国家STEM劳动力的多样性和科学素养。附着生长生物膜反应器非常适合城市水资源回收设施(WRRF)因为处理速率可以增加而反应器尺寸没有相应的扩大。生物膜反应器的其他潜在益处包括改进的工艺稳定性和在系统中保留缓慢生长的有机体。生物膜反应器的有效运行需要控制生物膜厚度和功能。生物膜中的微生物群落使用化学信号分子来协调群落功能。虽然几十年前就发现了微生物信号分子,但对控制这些分子在环境中表达的能力仍然知之甚少。本研究的目的是利用各种形式的微生物通讯信号来控制生物膜系统。这将通过以下方式实现:(1)确定全规模WRRF中信号分子的类型和丰度;(2)在纯培养物生物膜中建立信号分子生物膜控制策略;和(3)在环境相关的混合生物膜培养物中实施这种基于信号分子的控制策略。WRRF微生物群落的高通量测序分析将用于确定不同信号系统的遗传潜力。信号分子也将在华盛顿,DC地区现有的WRRF中进行测量,这些WRRF操作不同的过程配置。全面WRRF的研究将告知策略,用于在纯培养生物膜和实验室规模的混合培养硝化生物膜的生物膜控制的信号分子。这项研究的影响将超越WRRF,并为饮用水分配系统和医院环境提供潜在的好处,其中生物膜管理是保护公众健康所必需的。研究成果将纳入现有的K-12外联活动。这项研究将支持女性和代表性不足的研究生和本科生从霍华德大学,并将有利于早期的职业PI,致力于创造机会,代表性不足的群体了解微生物学和环境工程。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Emerging investigator series: the role of phage lifestyle in wastewater microbial community structures and functions: insights into diverse microbial environments
- DOI:10.1039/d2ew00755j
- 发表时间:2023-06-02
- 期刊:
- 影响因子:5
- 作者:Vela,Jeseth Delgado;Al-Faliti,Mitham
- 通讯作者:Al-Faliti,Mitham
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patrick Ymele-Leki其他文献
Patrick Ymele-Leki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patrick Ymele-Leki', 18)}}的其他基金
Excellence in Research: Biofilm Adhesive and Kinetic Properties Under Hydrodynamic Influences During Early Evolution Stages
卓越的研究:早期进化阶段水动力影响下的生物膜粘附和动力学特性
- 批准号:
2000330 - 财政年份:2020
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
GOALI: Collaborative Research: Advancing wastewater treatment resiliency and sustainability goals in the face of climate change
目标:合作研究:面对气候变化,提高废水处理的弹性和可持续性目标
- 批准号:
1931937 - 财政年份:2019
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Research Initiation Award: Small Molecule Inhibitors of the Phosphoenolpyruvate-Phosphotransferase System
研究启动奖:磷酸烯醇丙酮酸-磷酸转移酶系统的小分子抑制剂
- 批准号:
1505301 - 财政年份:2015
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
CLIMA/Collaborative Research: Enhancing Soil-Based Infrastructure Resilience to Climate Change: Harnessing the Potential of Fractured Soil by Adding Biopolymers
CLIMA/合作研究:增强土壤基础设施对气候变化的抵御能力:通过添加生物聚合物来利用破碎土壤的潜力
- 批准号:
2332082 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
CLIMA/Collaborative Research: Enhancing Soil-Based Infrastructure Resilience to Climate Change: Harnessing the Potential of Fractured Soil by Adding Biopolymers
CLIMA/合作研究:增强土壤基础设施对气候变化的抵御能力:通过添加生物聚合物来利用破碎土壤的潜力
- 批准号:
2332081 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Medium: Fortuna: Characterizing and Harnessing Performance Variability in Accelerator-rich Clusters
合作研究:CSR:Medium:Fortuna:表征和利用富含加速器的集群中的性能变异性
- 批准号:
2312689 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Collaborative Research: CSR: Medium: Fortuna: Characterizing and Harnessing Performance Variability in Accelerator-rich Clusters
合作研究:CSR:Medium:Fortuna:表征和利用富含加速器的集群中的性能变异性
- 批准号:
2401244 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Collaborative Research: Education DCL: EAGER: Harnessing the Power of Large Language Models in Digital Forensics Education at MSI and HBCU
合作研究:教育 DCL:EAGER:在 MSI 和 HBCU 的数字取证教育中利用大型语言模型的力量
- 批准号:
2333951 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
- 批准号:
2324033 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: Harnessing the chirality matching principle for enhanced catalytic reactivity
合作研究:利用手性匹配原理增强催化反应活性
- 批准号:
2247709 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Excellence in Research: Harnessing Big Data and Domain Knowledge to Advance Deep Learning for Interpretable Cell Quantitation
卓越的研究:利用大数据和领域知识推进深度学习以实现可解释的细胞定量
- 批准号:
2302274 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
NCI Clinical Trial Research Strategy, Harnessing of Equity, and Implementation
NCI 临床试验研究策略、公平利用和实施
- 批准号:
10721134 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Harnessing the potential of implementation science to define research priorities that advance Universal Health Coverage (UHC): A Research Agenda-Setting Workshop Aligned to a Multi-Country Delphi Study
利用实施科学的潜力来确定推进全民健康覆盖 (UHC) 的研究重点:与多国德尔菲研究相一致的研究议程设置研讨会
- 批准号:
480864 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Miscellaneous Programs














{{item.name}}会员




