III: Medium: Collaborative Research: Towards Scalable and Interpretable Graph Neural Networks
III:媒介:协作研究:迈向可扩展和可解释的图神经网络
基本信息
- 批准号:1955189
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-15 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Graphs are ubiquitous data structures in numerous domains, such as social science (social networks), natural science (physical systems, and protein-protein interaction networks) and knowledge graphs. As new generalizations of traditional deep neural networks to graph structured data, Graph Neural Networks (or GNNs) have demonstrated the power in graph representation learning and have permeated numerous areas of science and technology. However, GNNs also inherited the drawback of traditional deep neural networks, i.e., lacking interpretability. Moreover, the complexity of graph data introduces the scalability as a new limitation for GNNs because graph structured data are not independent. These drawbacks have raised tremendous concerns to adopt GNNs in many critical applications pertaining to fairness, privacy, and safety. Thus, this project aims to tackle the major drawbacks of GNNs and greatly enlarge their usability in critical applications. To achieve the research goal, this project systematically investigates advanced principles for scalable GNNs and new mechanisms to interpret GNNs. The proposed research extends the state-of-the-art GNNs to a new frontier, investigates original problems that entreat innovative solutions and paves the way for a new research endeavor effectively tame graph mining. As many real-world domains problems requires scalable and interpretable graph mining techniques, the project has potential to benefit many real-world applications from various disciplines such as Computer Science, Social Science, Healthcare and Bioinformatics. This project proposes novel principles and mechanisms for scalable and interpretable graph neural networks to facilitate the adoption of GNNs on critical domains, investigates associated fundamental research issues and develops effective algorithms. The project offers the first comprehensive investigation on these directions, and the designed novel methodologies and tasks will deepen our understanding on the inner working mechanisms of GNNs and contribute to real-world applications. The success of this project will be (1) New scalable and interpretable GNNs with state-of-the-art graph representation learning and predictive performance; (2) Theoretical analysis such as convergence and complexity; and (3) Open-source implementations of all key algorithms and frameworks. Disparate means are planned to disseminate the project and its findings, such as web enabled data and software repositories, books, journal and conference publications, special purpose workshops or tutorials, and industrial collaborations. The project can be effectively integrated to undergraduate and graduate courses as well as in student research projects.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图是许多领域中普遍存在的数据结构,例如社会科学(社交网络)、自然科学(物理系统和蛋白质-蛋白质相互作用网络)和知识图。作为传统深度神经网络对图结构数据的新概括,图神经网络(或GNN)已经展示了图表示学习的强大功能,并已渗透到许多科学和技术领域。然而,GNN也继承了传统深度神经网络的缺点,即,缺乏可解释性。此外,图数据的复杂性引入了可扩展性作为GNN的新限制,因为图结构化数据不是独立的。这些缺点引起了人们对在许多与公平、隐私和安全有关的关键应用中采用GNN的极大关注。因此,该项目旨在解决GNN的主要缺点,并大大提高其在关键应用程序中的可用性。为了实现研究目标,本项目系统地研究了可扩展GNN的高级原理和解释GNN的新机制。拟议的研究将最先进的GNN扩展到一个新的前沿,研究了需要创新解决方案的原始问题,并为有效驯服图挖掘的新研究奋进铺平了道路。由于许多现实领域的问题需要可扩展和可解释的图挖掘技术,该项目有可能使计算机科学,社会科学,医疗保健和生物信息学等各个学科的许多现实应用程序受益。该项目为可扩展和可解释的图神经网络提出了新的原理和机制,以促进GNN在关键领域的采用,研究相关的基础研究问题并开发有效的算法。该项目首次对这些方向进行了全面的研究,设计的新颖方法和任务将加深我们对GNN内部工作机制的理解,并有助于实际应用。该项目的成功将是(1)新的可扩展和可解释的GNN,具有最先进的图表示学习和预测性能;(2)理论分析,如收敛性和复杂性;以及(3)所有关键算法和框架的开源实现。计划采用不同的方式传播该项目及其成果,如网络数据和软件储存库、书籍、期刊和会议出版物、特殊目的讲习班或教程以及行业合作。该项目可以有效地整合到本科生和研究生课程以及学生的研究项目中。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Advanced graph and sequence neural networks for molecular property prediction and drug discovery
- DOI:10.1093/bioinformatics/btac112
- 发表时间:2022-02-18
- 期刊:
- 影响因子:5.8
- 作者:Wang, Zhengyang;Liu, Meng;Ji, Shuiwang
- 通讯作者:Ji, Shuiwang
Stochastic Optimization of Areas Under Precision-Recall Curves with Provable Convergence
- DOI:
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:Qi Qi-Qi;Youzhi Luo;Zhao Xu;Shuiwang Ji;Tianbao Yang
- 通讯作者:Qi Qi-Qi;Youzhi Luo;Zhao Xu;Shuiwang Ji;Tianbao Yang
On Explainability of Graph Neural Networks via Subgraph Explorations
- DOI:
- 发表时间:2021-02
- 期刊:
- 影响因子:0
- 作者:Hao Yuan;Haiyang Yu;Jie Wang;Kang Li;Shuiwang Ji
- 通讯作者:Hao Yuan;Haiyang Yu;Jie Wang;Kang Li;Shuiwang Ji
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shuiwang Ji其他文献
A Mathematical View of Attention Models in Deep Learning
深度学习中注意力模型的数学观点
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Shuiwang Ji;Yaochen Xie - 通讯作者:
Yaochen Xie
Discriminant Analysis for Dimensionality Reduction: An Overview of Recent Developments
降维判别分析:近期发展概述
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Jieping Ye;Shuiwang Ji - 通讯作者:
Shuiwang Ji
An Interpretable Neural Model with Interactive Stepwise Influence
具有交互式逐步影响的可解释神经模型
- DOI:
10.1007/978-3-030-16142-2_41 - 发表时间:
2019 - 期刊:
- 影响因子:2.3
- 作者:
Yin Zhang;Ninghao Liu;Shuiwang Ji;James Caverlee;Xia Hu - 通讯作者:
Xia Hu
Semi-Supervised Learning for High-Fidelity Fluid Flow Reconstruction
高保真流体流动重建的半监督学习
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Cong Fu;Jacob Helwig;Shuiwang Ji - 通讯作者:
Shuiwang Ji
Eliminating Position Bias of Language Models: A Mechanistic Approach
消除语言模型的位置偏差:一种机械方法
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ziqi Wang;Hanlin Zhang;Xiner Li;Kuan;Chi Han;Shuiwang Ji;S. Kakade;Hao Peng;Heng Ji - 通讯作者:
Heng Ji
Shuiwang Ji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shuiwang Ji', 18)}}的其他基金
III: Small: 3D Graph Neural Networks: Completeness, Efficiency, and Applications
III:小:3D 图神经网络:完整性、效率和应用
- 批准号:
2243850 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Towards Computational Exploration of Large-Scale Neuro-Morphological Datasets
合作研究:ABI 创新:大规模神经形态数据集的计算探索
- 批准号:
2028361 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: Demystifying Deep Learning on Graphs: From Basic Operations to Applications
III:小:协作研究:揭秘图深度学习:从基本操作到应用
- 批准号:
2006861 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: Structured Methods for Multi-Task Learning
III:小:协作研究:多任务学习的结构化方法
- 批准号:
1908166 - 财政年份:2018
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
III: Small: Deep Learning for Gene Expression Pattern Image Analysis
III:小:深度学习用于基因表达模式图像分析
- 批准号:
1908220 - 财政年份:2018
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
CAREER: Towards the Next Generation of Data-Driven
职业:迈向下一代数据驱动
- 批准号:
1922969 - 财政年份:2018
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
BIGDATA: Collaborative Research: F: Efficient and Exact Methods for Big Data Reduction
BIGDATA:协作研究:F:大数据缩减的高效且精确的方法
- 批准号:
1908198 - 财政年份:2018
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
III: Small: Deep Learning for Gene Expression Pattern Image Analysis
III:小:深度学习用于基因表达模式图像分析
- 批准号:
1811675 - 财政年份:2018
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Towards Computational Exploration of Large-Scale Neuro-Morphological Datasets
合作研究:ABI 创新:大规模神经形态数据集的计算探索
- 批准号:
1661289 - 财政年份:2017
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: Structured Methods for Multi-Task Learning
III:小:协作研究:多任务学习的结构化方法
- 批准号:
1615035 - 财政年份:2016
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似海外基金
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2347592 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
- 批准号:
2312862 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312930 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
- 批准号:
2310113 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant