III: Small: Collaborative Research: Demystifying Deep Learning on Graphs: From Basic Operations to Applications
III:小:协作研究:揭秘图深度学习:从基本操作到应用
基本信息
- 批准号:2006861
- 负责人:
- 金额:$ 23.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Graphs are ubiquitous in myriad high-impact domains, e.g., social media platforms, collaboration networks, biological networks, and critical infrastructure systems. Recent years have witnessed a surge of research interests in developing deep learning algorithms (in particular graph convolution networks - GCNs) for graph data. By stacking multiple layers of neural network primitives, GCNs learn high-level feature representations and address graph-related applications in an end-to-end manner, achieving superior performance in various learning tasks. In particular, the graph convolution and graph pooling operations are considered as fundamental building blocks of GCNs. However, a vast majority of existing graph convolution and graph pooling operations are simple extensions of the corresponding operations from convolution neural networks. Therefore, they are insufficient to tackle the fundamental challenges brought by real-world graphs and advance high-impact graph mining applications. The primary goal of this project is to develop novel operations to improve the essential building blocks of deep learning algorithms for graphs, propelling the state-of-the-art graph mining and deep learning research to a new frontier and advancing graph-related applications from different disciplines.This project proposes a class of novel graph convolution and pooling operations that can faithfully characterize the properties of real-world graphs from different perspectives, and build more tailored and powerful deep architectures in handling high-impact graph applications from different domains. First, it develops a family of trainable graph convolution operations that can integrate properties of real-world graphs from different aspects at the feature-level, edge-level, and node-level. Second, it investigates the problem of graph pooling to support graph-level analytical tasks and develops novel topology-aware graph pooling operations based on node sampling and node clustering. Third, it assesses the impact of proposed graph convolution and graph pooling operations by building more powerful and customized deep learning architectures for various common graph applications, such as graph anomaly detection and graph alignment. This project will be tightly integrated with newly developed undergraduate and graduate courses. The results and findings of this project will be disseminated through public datasets, open-source software repositories, journal and conference publications, special-purpose workshops or tutorials, as well as education and outreach activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图无处不在的无数高影响力的领域,例如,社交媒体平台,协作网络,生物网络,和关键的基础设施系统。近年来,人们对开发用于图数据的深度学习算法(特别是图卷积网络- GCNs)的研究兴趣激增。通过堆叠多层神经网络原语,GCNs以端到端方式学习高级特征表示和解决与图相关的应用,在各种学习任务中获得卓越的性能。其中,图卷积和图池运算被认为是GCNs的基本组成部分。然而,绝大多数现有的图卷积和图池操作都是卷积神经网络相应操作的简单扩展。因此,它们不足以解决现实世界图所带来的根本挑战,也不足以推进高影响力的图挖掘应用。该项目的主要目标是开发新的操作,以改进图的深度学习算法的基本构建块,将最先进的图挖掘和深度学习研究推向一个新的前沿,并推进不同学科的图相关应用。该项目提出了一类新颖的图卷积和池化操作,可以从不同的角度忠实地表征现实世界图的属性,并在处理来自不同领域的高影响力图应用程序时构建更定制和强大的深度架构。首先,它开发了一系列可训练的图卷积操作,可以在特征级,边缘级和节点级从不同方面整合现实世界图的属性。其次,研究了支持图级分析任务的图池化问题,并基于节点采样和节点聚类开发了新颖的拓扑感知图池化操作。第三,通过为各种常见的图应用(如图异常检测和图对齐)构建更强大和定制的深度学习架构,评估所提出的图卷积和图池操作的影响。本项目将与新开设的本科和研究生课程紧密结合。该项目的结果和发现将通过公共数据集、开放源码软件库、期刊和会议出版物、特殊目的讲习班或教程以及教育和外联活动进行传播。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Topology-Aware Graph Pooling Networks
- DOI:10.1109/tpami.2021.3062794
- 发表时间:2021-12-01
- 期刊:
- 影响因子:23.6
- 作者:Gao, Hongyang;Liu, Yi;Ji, Shuiwang
- 通讯作者:Ji, Shuiwang
Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences
- DOI:10.1137/1.9781611977172.7
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Meng Liu;Shuiwang Ji
- 通讯作者:Meng Liu;Shuiwang Ji
Efficient and Equivariant Graph Networks for Predicting Quantum Hamiltonian
- DOI:10.48550/arxiv.2306.04922
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Haiyang Yu;Zhao Xu;X. Qian;Xiaoning Qian;Shuiwang Ji
- 通讯作者:Haiyang Yu;Zhao Xu;X. Qian;Xiaoning Qian;Shuiwang Ji
Learning Fair Graph Representations via Automated Data Augmentations
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Hongyi Ling;Zhimeng Jiang;Youzhi Luo;S. Ji;Na Zou
- 通讯作者:Hongyi Ling;Zhimeng Jiang;Youzhi Luo;S. Ji;Na Zou
Group Equivariant Fourier Neural Operators for Partial Differential Equations
- DOI:10.48550/arxiv.2306.05697
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Jacob Helwig;Xuan Zhang;Cong Fu;Jerry Kurtin;Stephan Wojtowytsch;Shuiwang Ji
- 通讯作者:Jacob Helwig;Xuan Zhang;Cong Fu;Jerry Kurtin;Stephan Wojtowytsch;Shuiwang Ji
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shuiwang Ji其他文献
A Mathematical View of Attention Models in Deep Learning
深度学习中注意力模型的数学观点
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Shuiwang Ji;Yaochen Xie - 通讯作者:
Yaochen Xie
Discriminant Analysis for Dimensionality Reduction: An Overview of Recent Developments
降维判别分析:近期发展概述
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Jieping Ye;Shuiwang Ji - 通讯作者:
Shuiwang Ji
An Interpretable Neural Model with Interactive Stepwise Influence
具有交互式逐步影响的可解释神经模型
- DOI:
10.1007/978-3-030-16142-2_41 - 发表时间:
2019 - 期刊:
- 影响因子:2.3
- 作者:
Yin Zhang;Ninghao Liu;Shuiwang Ji;James Caverlee;Xia Hu - 通讯作者:
Xia Hu
Semi-Supervised Learning for High-Fidelity Fluid Flow Reconstruction
高保真流体流动重建的半监督学习
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Cong Fu;Jacob Helwig;Shuiwang Ji - 通讯作者:
Shuiwang Ji
Eliminating Position Bias of Language Models: A Mechanistic Approach
消除语言模型的位置偏差:一种机械方法
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ziqi Wang;Hanlin Zhang;Xiner Li;Kuan;Chi Han;Shuiwang Ji;S. Kakade;Hao Peng;Heng Ji - 通讯作者:
Heng Ji
Shuiwang Ji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shuiwang Ji', 18)}}的其他基金
III: Small: 3D Graph Neural Networks: Completeness, Efficiency, and Applications
III:小:3D 图神经网络:完整性、效率和应用
- 批准号:
2243850 - 财政年份:2023
- 资助金额:
$ 23.13万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Towards Computational Exploration of Large-Scale Neuro-Morphological Datasets
合作研究:ABI 创新:大规模神经形态数据集的计算探索
- 批准号:
2028361 - 财政年份:2020
- 资助金额:
$ 23.13万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Towards Scalable and Interpretable Graph Neural Networks
III:媒介:协作研究:迈向可扩展和可解释的图神经网络
- 批准号:
1955189 - 财政年份:2020
- 资助金额:
$ 23.13万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: Structured Methods for Multi-Task Learning
III:小:协作研究:多任务学习的结构化方法
- 批准号:
1908166 - 财政年份:2018
- 资助金额:
$ 23.13万 - 项目类别:
Standard Grant
III: Small: Deep Learning for Gene Expression Pattern Image Analysis
III:小:深度学习用于基因表达模式图像分析
- 批准号:
1908220 - 财政年份:2018
- 资助金额:
$ 23.13万 - 项目类别:
Standard Grant
CAREER: Towards the Next Generation of Data-Driven
职业:迈向下一代数据驱动
- 批准号:
1922969 - 财政年份:2018
- 资助金额:
$ 23.13万 - 项目类别:
Continuing Grant
BIGDATA: Collaborative Research: F: Efficient and Exact Methods for Big Data Reduction
BIGDATA:协作研究:F:大数据缩减的高效且精确的方法
- 批准号:
1908198 - 财政年份:2018
- 资助金额:
$ 23.13万 - 项目类别:
Standard Grant
III: Small: Deep Learning for Gene Expression Pattern Image Analysis
III:小:深度学习用于基因表达模式图像分析
- 批准号:
1811675 - 财政年份:2018
- 资助金额:
$ 23.13万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Towards Computational Exploration of Large-Scale Neuro-Morphological Datasets
合作研究:ABI 创新:大规模神经形态数据集的计算探索
- 批准号:
1661289 - 财政年份:2017
- 资助金额:
$ 23.13万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: F: Efficient and Exact Methods for Big Data Reduction
BIGDATA:协作研究:F:大数据缩减的高效且精确的方法
- 批准号:
1633359 - 财政年份:2016
- 资助金额:
$ 23.13万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322973 - 财政年份:2024
- 资助金额:
$ 23.13万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322974 - 财政年份:2024
- 资助金额:
$ 23.13万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
- 批准号:
2336769 - 财政年份:2024
- 资助金额:
$ 23.13万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
- 批准号:
2336768 - 财政年份:2024
- 资助金额:
$ 23.13万 - 项目类别:
Standard Grant
III: Small: Multiple Device Collaborative Learning in Real Heterogeneous and Dynamic Environments
III:小:真实异构动态环境中的多设备协作学习
- 批准号:
2311990 - 财政年份:2023
- 资助金额:
$ 23.13万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Reconstruction of Diffusion History in Cyber and Human Networks with Applications in Epidemiology and Cybersecurity
合作研究:III:小:重建网络和人类网络中的扩散历史及其在流行病学和网络安全中的应用
- 批准号:
2324770 - 财政年份:2023
- 资助金额:
$ 23.13万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311596 - 财政年份:2023
- 资助金额:
$ 23.13万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311598 - 财政年份:2023
- 资助金额:
$ 23.13万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Physics Guided Graph Networks for Modeling Water Dynamics in Freshwater Ecosystems
合作研究:III:小型:用于模拟淡水生态系统中水动力学的物理引导图网络
- 批准号:
2316306 - 财政年份:2023
- 资助金额:
$ 23.13万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Reconstruction of Diffusion History in Cyber and Human Networks with Applications in Epidemiology and Cybersecurity
合作研究:III:小:重建网络和人类网络中的扩散历史及其在流行病学和网络安全中的应用
- 批准号:
2324769 - 财政年份:2023
- 资助金额:
$ 23.13万 - 项目类别:
Standard Grant