Collaborative Research: CNS core: Medium: True-Time-Delay based MIMO System and Testbed for Low-Latency Wideband Beam and Interference Management in Millimeter Wave Networks

合作研究: CNS 核心:中:基于真实时延的 MIMO 系统和毫米波网络中低延迟宽带波束和干扰管理的测试台

基本信息

  • 批准号:
    1955306
  • 负责人:
  • 金额:
    $ 65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Given the shortage of spectrum below 6GHz, millimeter wave (mmW) frequencies have played an important role in the emerging 5G networks and this trend is expected to continue in the next generations. Due to unfavorable propagation conditions and attenuation at high frequencies, mmW networks require the densification of base stations and radios equipped with a large number of antennas to compensate path loss via directional gain using narrow beams. The cost and power consumption of radios with antenna arrays present a significant challenge, and their architecture is of fundamental importance and influence on the entire networking stack. State-of-the-art approaches based on phased antenna array architecture are faced with several fundamental problems when radio bandwidth and the number of antennas increases including prohibitive latency in initial connectivity and link management, distortion in the directionality of the beams, reduced beamforming gain, and ability to suppress the interference in dense deployments. This project aims to develop and demonstrate a novel adaptive true-time-delay (TTD) based array for wideband mmW networks and overcome challenges of phased antenna arrays. The approach involves co-design and optimization of tunable radio frequency (RF) circuits, antenna array system, signal processing, and network protocols for low latency access, wideband beamforming gain, and interference management. The research work will pursue four key thrusts: Thrust 1 will develop TTD array-based fast beam training and spatial interference detection and estimation for mmW networks with large modulated bandwidth. The objective is to reduce the overhead in initial access due to beam training by exploiting frequency-dependent antenna weight vectors in TTD arrays through signal processing and develop a low latency protocol design for simultaneous beam training and interference estimation in dense mmW networks. Thrust 2 will focus on the data communication design using TTD arrays to facilitate multiple-input multiple-output (MIMO) multiplexing and suppress interference from co-channel base stations and users. The main challenge is to achieve high beamforming gain over a wide modulated bandwidth together with effective nulling of wideband interferers. Thrust 3 will develop an experimental testbed for the evaluation of signal processing algorithms and protocols from Thrusts 1 and 2. It will involve the integration of widely reconfigurable delay compensating circuits and custom mmW front-end at 28GHz into a 16-element TTD antenna array. Thrust 4 will experimentally validate TTD array-based beam training, squint-free wideband beamforming and interference nulling, and wideband MIMO communications using the testbed developed in Thrust 3.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
鉴于6GHz以下频谱的短缺,毫米波(mmW)频率在新兴的5G网络中发挥了重要作用,预计这一趋势将在下一代中继续下去。由于不利的传播条件和高频处的衰减,mmW网络需要配备有大量天线的基站和无线电的致密化,以使用窄波束经由定向增益来补偿路径损耗。具有天线阵列的无线电的成本和功耗是一个重大挑战,其架构对整个网络堆栈具有根本的重要性和影响。当无线电带宽和天线数量增加时,基于相控天线阵列架构的现有技术方法面临几个基本问题,包括初始连接和链路管理中的禁止延迟、波束方向性的失真、降低的波束成形增益以及在密集部署中抑制干扰的能力。该项目旨在开发和演示一种新的基于宽带毫米波网络的自适应真时延(TTD)阵列,并克服相控天线阵列的挑战。该方法涉及可调谐射频(RF)电路、天线阵列系统、信号处理和网络协议的协同设计和优化,以实现低延迟接入、宽带波束成形增益和干扰管理。 研究工作将追求四个关键目标:目标1将为具有大调制带宽的毫米波网络开发基于TTD阵列的快速波束训练和空间干扰检测与估计。目标是通过信号处理利用TTD阵列中的频率相关天线权重向量来减少由于波束训练而导致的初始接入中的开销,并开发用于密集mmW网络中的同时波束训练和干扰估计的低延迟协议设计。第二目标将重点关注使用TTD阵列的数据通信设计,以促进多输入多输出(MIMO)复用并抑制来自同频基站和用户的干扰。主要的挑战是在宽调制带宽上实现高波束形成增益以及宽带干扰器的有效调零。Thrust 3将开发一个实验测试平台,用于评估Thrust 1和Thrust 2的信号处理算法和协议。它将涉及广泛可重构的延迟补偿电路和28GHz的定制毫米波前端集成到16单元TTD天线阵列中。推力4将使用推力3中开发的测试平台对基于TTD阵列的波束训练、无斜视宽带波束形成和干扰归零以及宽带MIMO通信进行实验验证。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Low-Power Process and Temperature-Invariant Constant Slope-and-Swing Ramp-Based Phase Interpolator
低功耗处理和温度不变的基于恒定斜率和摆幅斜坡的相位插值器
  • DOI:
    10.1109/jssc.2023.3242935
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Mohapatra, Soumen;Lin, Chung-Ching;Gupta, Subhanshu;Heo, Deukhyoun
  • 通讯作者:
    Heo, Deukhyoun
Fast Beam Training With True-Time-Delay Arrays in Wideband Millimeter-Wave Systems
  • DOI:
    10.1109/tcsi.2021.3054428
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Veljko Boljanovic;Han Yan;Chung-Ching Lin;Soumen Mohapatra;D. Heo;Subhanshu Gupta;D. Cabric
  • 通讯作者:
    Veljko Boljanovic;Han Yan;Chung-Ching Lin;Soumen Mohapatra;D. Heo;Subhanshu Gupta;D. Cabric
Four-Element Wide Modulated Bandwidth MIMO Receiver With >35-dB Interference Cancellation
  • DOI:
    10.1109/tmtt.2020.2986441
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Erfan Ghaderi;A. Ramani;A. Rahimi;D. Heo;S. Shekhar;Subhanshu Gupta
  • 通讯作者:
    Erfan Ghaderi;A. Ramani;A. Rahimi;D. Heo;S. Shekhar;Subhanshu Gupta
Design of Millimeter-Wave Single-Shot Beam Training for True-Time-Delay Array
Multi-Mode Spatial Signal Processor With Rainbow-Like Fast Beam Training and Wideband Communications Using True-Time-Delay Arrays
  • DOI:
    10.1109/jssc.2022.3178798
  • 发表时间:
    2022-06-08
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Lin, Chung-Ching;Puglisi, Chase;Gupta, Subhanshu
  • 通讯作者:
    Gupta, Subhanshu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Subhanshu Gupta其他文献

Multi-rate Polyphase DSP and LMS Calibration Schemes for Oversampled ADCs
A Review of Phased-Array Receiver Architectures for 5G Communications
5G 通信相控阵接收器架构回顾
Real-time Deformation Correction in Additively Printed Flexible Antenna Arrays
加法印刷柔性天线阵列中的实时变形校正
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sreeni Poolakkal;Abdullah Islam;Shrestha Bansal;Arpit Rao;Ted Dabrowski;Kalsi Kwan;Amit Mishra;Quiyan Xu;Erfan Ghaderi;Pradeep Lall;Sudip Shekhar;Julio Navarro;Shenqiang Ren;John Williams;Subhanshu Gupta
  • 通讯作者:
    Subhanshu Gupta
A 4-Element MIMO Baseband Receiver with >35dB 80MHz Spatial Interference Cancellation
具有 >35dB 80MHz 空间干扰消除能力的 4 元件 MIMO 基带接收器
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Erfan Ghaderi;A. Ramani;A. Rahimi;S. Shekhar;Subhanshu Gupta
  • 通讯作者:
    Subhanshu Gupta
Lomb algorithm versus fast fourier transform in heart rate variability analyses of pain in premature infants
Lomb 算法与快速傅立叶变换在早产儿疼痛心率变异性分析中的比较

Subhanshu Gupta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Subhanshu Gupta', 18)}}的其他基金

CAREER: Scalable and reconfigurable time-based circuits and systems for high-resolution large antenna arrays
职业:用于高分辨率大型天线阵列的可扩展和可重构的基于时间的电路和系统
  • 批准号:
    1944688
  • 财政年份:
    2020
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
Collaborative Research: CubeSat Ideas Lab: VIrtual Super-resolution Optics with Reconfigurable Swarms (VISORS)
合作研究:CubeSat Ideas Lab:具有可重构群的虚拟超分辨率光学器件 (VISORS)
  • 批准号:
    1936521
  • 财政年份:
    2019
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2345339
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225578
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
  • 批准号:
    2418188
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
  • 批准号:
    2242503
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
  • 批准号:
    2343959
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
  • 批准号:
    2343863
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2341378
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
  • 批准号:
    2409008
  • 财政年份:
    2023
  • 资助金额:
    $ 65万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了