CAREER: Scalable and reconfigurable time-based circuits and systems for high-resolution large antenna arrays
职业:用于高分辨率大型天线阵列的可扩展和可重构的基于时间的电路和系统
基本信息
- 批准号:1944688
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Extremely large antenna arrays (LAA) comprising hundreds of antenna elements promise to provide unprecedented spatial resolutions that can not only enable many critical infrastructure technologies using millimeter-wave wireless communications but also usher in exciting concepts such as holographic surfaces for multi-user wireless communications, six-dimensional positioning for autonomous vehicles, high-speed communication links for deep-space planetary explorations, and automobile radars for detecting multiple objects. However, the signal processing at these large-scale arrays bring challenges of higher energy consumption and less accurate localization. Conventional phased array transceivers, which interface with the real-world signals, face several impediments in low-latency tracking and scaling due to highly complex signal processing and imperfect spatial filtering. Such imperfections result in drastic performance degradation endangering evolution of emerging wireless technologies. To overcome these fundamental challenges, this research seeks to use discrete-time delay-compensating techniques incorporating scalable time-based circuits and systems so that future LAAs can estimate direction-of-arrival precisely, cancel multiple interferences efficiently, and optimize the physical front-end transceivers autonomously. This research effort is integrated with the principal investigator's educational career goal of enhancing high-school and undergraduate learning experience by increasing education, awareness and preparation of the students through active collaborations with national labs and industry. The objective of this research is to transform multi-antenna phased arrays using discrete-time delay-compensating time-based circuits and systems with wide delay ranges and high precision for both energy-efficient spatial signal processing and low-latency beam acquisition. Several design techniques with non-uniform-sampling-based scalable discrete-time data converters will form the basis of delay-compensating spatial signal processor capable of handling gigahertz signal bandwidth. First, a discrete-time delay-compensating spatial signal processor will be demonstrated with variable gain and delay ranges for near-field and far-field LAAs. Second, the delay-compensating technique will be instituted in linear time-based matrix-multiplying data converters optimized using artificial-intelligence based self-initializing bias optimization techniques to demonstrate faster and energy-efficient convergence. Third, scalable system-level models for spatial arrays incorporating wide scan angles, high-speed signal bandwidth, large number of antenna elements, low-latency direction-of-arrival, and segmentation in true-time-delay arrays will be developed to study their effects on both spectral efficiency and energy efficiency for future LAAs. Through these comprehensive studies, the project will establish the advantages of discrete-time delay-compensating in wideband LAAs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由数百个天线单元组成的超大型天线阵(LAA)有望提供前所未有的空间分辨率,不仅可以使许多关键基础设施技术使用毫米波无线通信,还会带来令人兴奋的概念,如用于多用户无线通信的全息表面、用于自动驾驶车辆的六维定位、用于深空行星探测的高速通信链路,以及用于探测多个物体的汽车雷达。然而,这些大规模阵列的信号处理带来了更高的能耗和更不准确的定位的挑战。由于高度复杂的信号处理和不完善的空间滤波,传统的与真实世界信号交互的相控阵收发信机在低延迟跟踪和定标方面面临着一些障碍。这些缺陷导致性能急剧下降,危及新兴无线技术的发展。为了克服这些根本的挑战,本研究试图使用结合可扩展的时基电路和系统的离散时间延迟补偿技术,以便未来的LAA能够精确地估计到达方向,有效地消除多个干扰,并自主地优化物理前端收发机。这项研究工作与首席研究员的教育职业目标相结合,即通过与国家实验室和行业的积极合作,通过提高学生的教育、意识和准备来增强高中和本科生的学习体验。这项研究的目的是利用离散时间延迟补偿时基电路和系统来变换多天线相控阵,具有宽延迟范围和高精度的能量高效的空间信号处理和低延迟波束捕获。基于非均匀采样的可扩展离散时间数据转换器的几种设计技术将构成能够处理千兆赫信号带宽的延迟补偿空间信号处理器的基础。首先,将演示一种离散时间延迟补偿空间信号处理器,其具有可变的近场和远场LAA的增益和延迟范围。其次,延迟补偿技术将在基于线性时间的矩阵乘法数据转换器中引入,该转换器使用基于人工智能的自初始化偏差优化技术进行优化,以展示更快和更节能的收敛。第三,发展可扩展的系统级空间阵列模型,包括宽扫描角度、高速信号带宽、大量天线单元、低延迟到达方向以及实时延迟阵列中的分段,以研究它们对未来LAA的频谱效率和能量效率的影响。通过这些全面的研究,该项目将在宽带局域网中确立离散时间延迟补偿的优势。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Design of Millimeter-Wave Single-Shot Beam Training for True-Time-Delay Array
- DOI:10.1109/spawc48557.2020.9154233
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:Veljko Boljanovic;Han Yan;Erfan Ghaderi;D. Heo;Subhanshu Gupta;D. Cabric
- 通讯作者:Veljko Boljanovic;Han Yan;Erfan Ghaderi;D. Heo;Subhanshu Gupta;D. Cabric
10.8 A 4-Element 500MHz-Modulated-BW 40mW 6b 1GS/s Analog-Time-to-Digital-Converter-Enabled Spatial Signal Processor in 65nm CMOS
10.8 采用 65nm CMOS 封装、支持模拟时间数字转换器的 4 元件 500MHz 调制带宽 40mW 6b 1GS/s 空间信号处理器
- DOI:10.1109/isscc19947.2020.9063106
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Ghaderi, Erfan;Puglisi, Chase;Bansal, Shrestha;Gupta, Subhanshu
- 通讯作者:Gupta, Subhanshu
Multi-Mode Spatial Signal Processor With Rainbow-Like Fast Beam Training and Wideband Communications Using True-Time-Delay Arrays
- DOI:10.1109/jssc.2022.3178798
- 发表时间:2022-06-08
- 期刊:
- 影响因子:5.4
- 作者:Lin, Chung-Ching;Puglisi, Chase;Gupta, Subhanshu
- 通讯作者:Gupta, Subhanshu
Wideband Beamforming with Rainbow Beam Training using Reconfigurable True-Time-Delay Arrays for Millimeter-Wave Wireless
使用用于毫米波无线的可重新配置的真实时延阵列进行彩虹波束训练的宽带波束形成
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:6.9
- 作者:Chung-Ching Lin, Veljko Boljanovic
- 通讯作者:Chung-Ching Lin, Veljko Boljanovic
A 4-Element 800MHz-BW 29mW True-Time-Delay Spatial Signal Processor Enabling Fast Beam-Training with Data Communications
4 元件 800MHz-BW 29mW 实时延迟空间信号处理器,通过数据通信实现快速波束训练
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Chung-Ching Lin, Chase Puglisi
- 通讯作者:Chung-Ching Lin, Chase Puglisi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Subhanshu Gupta其他文献
Multi-rate Polyphase DSP and LMS Calibration Schemes for Oversampled ADCs
- DOI:
10.1007/s11265-012-0677-3 - 发表时间:
2012-06-07 - 期刊:
- 影响因子:1.800
- 作者:
Subhanshu Gupta;Yi Tang;Jeyanandh Paramesh;David J. Allstot - 通讯作者:
David J. Allstot
A Review of Phased-Array Receiver Architectures for 5G Communications
5G 通信相控阵接收器架构回顾
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Ajinkya Kharalkar;Anik Batabyal;Rajesh H. Zele;Subhanshu Gupta - 通讯作者:
Subhanshu Gupta
Real-time Deformation Correction in Additively Printed Flexible Antenna Arrays
加法印刷柔性天线阵列中的实时变形校正
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Sreeni Poolakkal;Abdullah Islam;Shrestha Bansal;Arpit Rao;Ted Dabrowski;Kalsi Kwan;Amit Mishra;Quiyan Xu;Erfan Ghaderi;Pradeep Lall;Sudip Shekhar;Julio Navarro;Shenqiang Ren;John Williams;Subhanshu Gupta - 通讯作者:
Subhanshu Gupta
A 4-Element MIMO Baseband Receiver with >35dB 80MHz Spatial Interference Cancellation
具有 >35dB 80MHz 空间干扰消除能力的 4 元件 MIMO 基带接收器
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Erfan Ghaderi;A. Ramani;A. Rahimi;S. Shekhar;Subhanshu Gupta - 通讯作者:
Subhanshu Gupta
A QPLL-timed direct-RF sampling band-pass ΣΔ ADC with a 1.2 GHz tuning range in 0.13 µm CMOS
采用 0.13 µm CMOS 封装、调谐范围为 1.2 GHz 的 QPLL 定时直接射频采样带通 ΣΔ ADC
- DOI:
10.1109/rfic.2011.5940594 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Subhanshu Gupta;Daibashish Gangopadhyay;H. Lakdawala;J. Rudell;D. Allstot - 通讯作者:
D. Allstot
Subhanshu Gupta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Subhanshu Gupta', 18)}}的其他基金
Collaborative Research: CNS core: Medium: True-Time-Delay based MIMO System and Testbed for Low-Latency Wideband Beam and Interference Management in Millimeter Wave Networks
合作研究: CNS 核心:中:基于真实时延的 MIMO 系统和毫米波网络中低延迟宽带波束和干扰管理的测试台
- 批准号:
1955306 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Collaborative Research: CubeSat Ideas Lab: VIrtual Super-resolution Optics with Reconfigurable Swarms (VISORS)
合作研究:CubeSat Ideas Lab:具有可重构群的虚拟超分辨率光学器件 (VISORS)
- 批准号:
1936521 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
CAREER: Reconfigurable Infrastructure and Scalable Execution for Advanced Air Mobility (RISE-AAM)
职业:先进空中机动性的可重构基础设施和可扩展执行(RISE-AAM)
- 批准号:
2237215 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
An Energy-Efficient, CMOS-based, and Scalable Mixed-Signal DNN System with Reconfigurable Crossbars
具有可重新配置交叉开关的节能、基于 CMOS 的可扩展混合信号 DNN 系统
- 批准号:
2221753 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Photo-patterning of Two-Dimensional Nanomaterials for Reconfigurable Microelectronics
合作研究:用于可重构微电子学的二维纳米材料的可扩展光图案化
- 批准号:
1930769 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Photo-patterning of Two-Dimensional Nanomaterials for Reconfigurable Microelectronics
合作研究:用于可重构微电子学的二维纳米材料的可扩展光图案化
- 批准号:
1930809 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CSR:NeTS:Small:GigaPaxos: System Support for Group-Scalable, Reconfigurable Replica Coordination
CSR:NeTS:Small:GigaPaxos:对组可扩展、可重新配置副本协调的系统支持
- 批准号:
1717132 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
OP: Application-Aware Reconfigurable Silicon-Photonic Interconnected Computing Systems for Energy-Efficient and Scalable Data Centers
OP:用于节能和可扩展数据中心的应用感知可重构硅光子互连计算系统
- 批准号:
1611560 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Scalable Nanomanufacturing of Reconfigurable Photonic Crystals
可重构光子晶体的可扩展纳米制造
- 批准号:
1562861 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Power-Efficient and Reliable 3D Stacked Reconfigurable Photonic Network-on-Chips for Scalable Multicore Architectures
SHF:小型:协作研究:用于可扩展多核架构的高效且可靠的 3D 堆叠可重构光子片上网络
- 批准号:
1547034 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Power-Efficient and Reliable 3D Stacked Reconfigurable Photonic Network-on-Chips for Scalable Multicore Architectures
SHF:小型:协作研究:用于可扩展多核架构的高效且可靠的 3D 堆叠可重构光子片上网络
- 批准号:
1318997 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Performance-scalable reconfigurable system based on tightly-coupled reconfigurable devices
基于紧耦合可重构设备的性能可扩展可重构系统
- 批准号:
25730032 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Young Scientists (B)














{{item.name}}会员




