RI: Medium: Learning Task-Specific Representations for Broadly Capable Reinforcement Learning Agents

RI:中:学习具有广泛能力的强化学习代理的特定任务表示

基本信息

  • 批准号:
    1955361
  • 负责人:
  • 金额:
    $ 119.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

While artificially intelligent agents have achieved expert-level performance on some specialized tasks, progress on designing agents that are broadly capable---able to reach adequate performance on a wide range of tasks---remains elusive. One major obstacle is that the sensors and actuators required by a general-purpose agent must be very complex, to support all the different tasks it may be required to solve. The resulting complexity makes decision-making much harder and drastically hinders the effectiveness of such agents. By contrast, agents that do only one thing can be given much simpler inputs and outputs that are carefully designed to be low-dimensional, highly informative, and task-relevant; such agents often demonstrate satisfactory performance. This project posits that a key requirement for generally intelligent agents is the ability to autonomously formulate such representations for themselves---as abstactions over their complex sensor and actuator spaces---and plans to design new algorithms to do so. AI systems with this ability could be re-tasked to solve many different problems without modification, rather than requiring substantial (and often prohibitive) engineering effort for each new application.This project aims to develop new algorithms that enable agents to learn compact, task-specific abstractions of new problems, by combining and extending techniques for discovering high-level actions, discovering perceptual abstractions that support planning with high-level actions, and formally characterizing the complexity and value loss of using those abstractions. The project will: 1) design new algorithms for reward-driven (and therefore task-specific) perceptual- and action-abstraction discovery; 2) enable inter-task abstraction transfer (which avoids having to re-learn abstractions from scratch each time) through new algorithms for learning generalized skills and constructing modular action-perception-abstraction packages, and new theory characterizing the value loss of using such generalized abstractions; and 3) create principled methods for incrementally constructing a library of modular action-perception abstractions and for adaptively recruiting existing action-state abstractions to solve new tasks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
虽然人工智能代理已经在一些专门的任务上实现了专家级的性能,但在设计具有广泛能力的代理方面的进展-能够在广泛的任务上达到足够的性能-仍然难以捉摸。一个主要的障碍是,通用代理所需的传感器和执行器必须非常复杂,以支持可能需要解决的所有不同任务。由此产生的复杂性使得决策更加困难,并大大阻碍了这些代理的有效性。相比之下,只做一件事的智能体可以得到更简单的输入和输出,这些输入和输出经过精心设计,具有低维、高信息量和任务相关性;这些智能体通常表现出令人满意的性能。该项目假定,一般智能代理的一个关键要求是能够自主地制定这样的表示为自己-作为抽象的复杂的传感器和执行器空间-并计划设计新的算法来做到这一点。具有这种能力的人工智能系统可以重新分配任务来解决许多不同的问题,而无需修改,而不需要大量的这个项目旨在开发新的算法,使代理能够学习新问题的紧凑,特定于任务的抽象,通过组合和扩展用于发现高级操作的技术,发现支持高级别行动计划的感知抽象,并正式描述使用这些抽象的复杂性和价值损失。该项目将:1)设计奖励驱动的新算法(因此是特定于任务的)感知和动作抽象发现; 2)实现任务间抽象转移(这避免了每次都必须从头开始重新学习抽象),通过用于学习广义技能和构建模块化动作感知抽象包的新算法,以及表征使用这种广义抽象的价值损失的新理论;以及3)创建原则性方法,用于增量地构建模块化动作感知抽象库,并用于自适应地招募现有的动作状态抽象来解决新任务。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robustly Learning Composable Options in Deep Reinforcement Learning
  • DOI:
    10.24963/ijcai.2021/298
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akhil Bagaria;J. Senthil;Matthew Slivinski;G. Konidaris
  • 通讯作者:
    Akhil Bagaria;J. Senthil;Matthew Slivinski;G. Konidaris
Model-based Lifelong Reinforcement Learning with Bayesian Exploration
  • DOI:
    10.48550/arxiv.2210.11579
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haotian Fu;Shangqun Yu;Michael S. Littman;G. Konidaris
  • 通讯作者:
    Haotian Fu;Shangqun Yu;Michael S. Littman;G. Konidaris
Skill Discovery for Exploration and Planning using Deep Skill Graphs
使用深度技能图进行探索和规划的技能发现
Autonomous Learning of Object-Centric Abstractions for High-Level Planning
用于高层规划的以对象为中心的抽象的自主学习
Coarse-Grained Smoothness for Reinforcement Learning in Metric Spaces
度量空间中强化学习的粗粒度平滑度
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

George Konidaris其他文献

George Konidaris的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('George Konidaris', 18)}}的其他基金

CAREER: Learning Symbolic Representations for Robot Manipulation
职业:学习机器人操作的符号表示
  • 批准号:
    1844960
  • 财政年份:
    2019
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Continuing Grant
FMitF: Collaborative Research: User-Centered Verification and Repair of Trigger-Action Programs
FMITF:协作研究:以用户为中心的触发操作程序验证和修复
  • 批准号:
    1836948
  • 财政年份:
    2018
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Hidden Parameter Markov Decision Processes: Exploiting Structure in Families of Tasks
RI:小型:协作研究:隐藏参数马尔可夫决策过程:利用任务族中的结构
  • 批准号:
    1717569
  • 财政年份:
    2017
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Standard Grant
Robotics Activities at Association for the Advancement of Artificial Intelligence (AAAI) 2016
2016 年人工智能促进协会 (AAAI) 机器人活动
  • 批准号:
    1600043
  • 财政年份:
    2016
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313151
  • 财政年份:
    2023
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313149
  • 财政年份:
    2023
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
  • 批准号:
    2312955
  • 财政年份:
    2023
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313150
  • 财政年份:
    2023
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Continuing Grant
RI: Medium: Foundations of Recourse Verification in Machine Learning
RI:媒介:机器学习资源验证的基础
  • 批准号:
    2313105
  • 财政年份:
    2023
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
  • 批准号:
    2312956
  • 财政年份:
    2023
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Standard Grant
RI: Medium: Foundations of Self-Supervised Learning Through the Lens of Probabilistic Generative Models
RI:媒介:通过概率生成模型的视角进行自我监督学习的基础
  • 批准号:
    2211907
  • 财政年份:
    2022
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Bootstrapping natural feedback for reinforcement learning
合作研究:RI:中:引导强化学习的自然反馈
  • 批准号:
    2212310
  • 财政年份:
    2022
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: MoDL: Occams Razor in Deep and Physical Learning
合作研究:RI:媒介:MoDL:深度学习和物理学习中的奥卡姆斯剃刀
  • 批准号:
    2212519
  • 财政年份:
    2022
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Learning Compositional Implicit Representations for 3D Scene Understanding
合作研究:RI:媒介:学习 3D 场景理解的组合隐式表示
  • 批准号:
    2211258
  • 财政年份:
    2022
  • 资助金额:
    $ 119.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了