RI: Medium: Tree-Structured Self-Supervised Modeling for Natural Language
RI:中:自然语言的树结构自监督建模
基本信息
- 批准号:1955567
- 负责人:
- 金额:$ 113.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project promotes the development of energy-efficient and linguistically-motivated computational methods for understanding human language. Recent advances in text-based tasks such as machine translation and question answering have been fueled by training huge-scale neural network models on billions of words. While this brute-force approach has no doubt been successful, it also has many downsides. As the computational requirements for training and using these models grow larger and larger, their carbon footprints have been steadily increasing, and their accessibility has become limited to those at a few well-funded companies and institutions. These models do not explicitly consider the hierarchical nature of language, a well-studied phenomenon in linguistics, which the investigators believe contributes to their overall inefficiency and also reduces their interpretability to end users. The technologies developed in this project aim not only to make computational models of language more accessible and efficient, but also to improve the state of the art in text generation tasks such as translation and summarization. The project integrates the newly-developed methods into academic settings to provide significant outreach to undergraduates outside of computer science as well as in underrepresented communities.To develop this new methodology, the project introduces neural architectures that induce syntactic and semantically-relevant tree structures from raw text while simultaneously learning powerful vector-based representations that improve downstream tasks. These models combine insights from self-supervised learning, which allows for powerful representation learning without expensive manual effort, with a tree-shaped structural bias. The resulting methods are evaluated with respect to three major goals: (1) enabling representation learning of the entire linguistic hierarchy (i.e., words, phrases, sentences, and discourse-level units) within a single architecture; (2) improving computational and energy efficiency of training and inference; and (3) improving long-form text generation tasks including document-level translation and text summarization. This research effort aims to spur research into sustainable and scalable language representation learning, and as such its outputs include publicly-released pretrained models and open-sourced code.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目促进了能源效率和语言动机的计算方法的发展,以理解人类语言。机器翻译和问答等基于文本的任务的最新进展是通过在数十亿个单词上训练大规模神经网络模型来推动的。虽然这种暴力手段毫无疑问是成功的,但它也有许多缺点。随着训练和使用这些模型的计算需求越来越大,它们的碳足迹一直在稳步增加,并且它们的可访问性仅限于少数资金充足的公司和机构。这些模型没有明确考虑语言的等级性质,这是语言学中一个研究得很好的现象,研究人员认为这导致了它们的整体效率低下,也降低了它们对最终用户的可解释性。该项目中开发的技术不仅旨在使语言的计算模型更易于访问和更有效,而且还旨在提高翻译和摘要等文本生成任务的最新水平。该项目将新开发的方法整合到学术环境中,为计算机科学以外的本科生以及代表性不足的社区提供重要的推广服务。为了开发这种新方法,该项目引入了神经架构,从原始文本中诱导语法和语义相关的树结构,同时学习强大的基于向量的表示,以改善下游任务。这些模型结合了联合收割机的自我监督学习的见解,它允许强大的表示学习,而无需昂贵的手动工作,具有树形结构偏差。由此产生的方法相对于三个主要目标进行评估:(1)使整个语言层次的表示学习(即,单词、短语、句子和话语级单元);(2)提高训练和推理的计算和能量效率;以及(3)改进长格式文本生成任务,包括文档级翻译和文本摘要。这项研究工作旨在推动对可持续和可扩展的语言表征学习的研究,因此其成果包括公开发布的预训练模型和开源代码。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的评估来支持智力优点和更广泛的影响审查标准。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Revisiting Simple Neural Probabilistic Language Models
- DOI:10.18653/v1/2021.naacl-main.407
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:Simeng Sun;Mohit Iyyer
- 通讯作者:Simeng Sun;Mohit Iyyer
DEMETR: Diagnosing Evaluation Metrics for Translation
DEMETR:诊断翻译评估指标
- DOI:10.18653/v1/2022.emnlp-main.649
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Karpinska, Marzena;Raj, Nishant;Thai, Katherine;Song, Yixiao;Gupta, Ankita;Iyyer, Mohit
- 通讯作者:Iyyer, Mohit
TABBIE: Pretrained Representations of Tabular Data
- DOI:10.18653/v1/2021.naacl-main.270
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:H. Iida;Dung Ngoc Thai;Varun Manjunatha;Mohit Iyyer
- 通讯作者:H. Iida;Dung Ngoc Thai;Varun Manjunatha;Mohit Iyyer
Hurdles to Progress in Long-form Question Answering
- DOI:10.18653/v1/2021.naacl-main.393
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Kalpesh Krishna;Aurko Roy;Mohit Iyyer
- 通讯作者:Kalpesh Krishna;Aurko Roy;Mohit Iyyer
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohit Iyyer其他文献
Casting Light on Invisible Cities: Computationally Engaging with Literary Criticism
照亮看不见的城市:计算与文学批评的结合
- DOI:
10.18653/v1/n19-1130 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Shufan Wang;Mohit Iyyer - 通讯作者:
Mohit Iyyer
One Thousand and One Pairs: A"novel"challenge for long-context language models
一千零一对:长上下文语言模型的“新颖”挑战
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Marzena Karpinska;Katherine Thai;Kyle Lo;Tanya Goyal;Mohit Iyyer - 通讯作者:
Mohit Iyyer
PaRaDe: Passage Ranking using Demonstrations with Large Language Models
PaRaDe:使用大型语言模型的演示进行段落排名
- DOI:
10.48550/arxiv.2310.14408 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Andrew Drozdov;Honglei Zhuang;Zhuyun Dai;Zhen Qin;Razieh Rahimi;Xuanhui Wang;Dana Alon;Mohit Iyyer;Andrew McCallum;Donald Metzler;Kai Hui - 通讯作者:
Kai Hui
KNN-LM Does Not Improve Open-ended Text Generation
KNN-LM 没有改进开放式文本生成
- DOI:
10.48550/arxiv.2305.14625 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Shufan Wang;Yixiao Song;Andrew Drozdov;Aparna Garimella;Varun Manjunatha;Mohit Iyyer - 通讯作者:
Mohit Iyyer
Suri: Multi-constraint Instruction Following for Long-form Text Generation
Suri:长文本生成的多约束指令遵循
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Chau Minh Pham;Simeng Sun;Mohit Iyyer - 通讯作者:
Mohit Iyyer
Mohit Iyyer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohit Iyyer', 18)}}的其他基金
Collaborative Research: RI: Medium: Multilingual Long-form QA with Retrieval-Augmented Language Models
合作研究:RI:Medium:采用检索增强语言模型的多语言长格式 QA
- 批准号:
2312949 - 财政年份:2023
- 资助金额:
$ 113.09万 - 项目类别:
Standard Grant
Collaborative Research: STEM Learning Embedded in a Machine-in-the-Loop Collaborative Story Writing Game
协作研究:嵌入机器在环协作故事写作游戏中的 STEM 学习
- 批准号:
2202506 - 财政年份:2022
- 资助金额:
$ 113.09万 - 项目类别:
Standard Grant
CAREER: Building Creative Writing Assistants for Machine-in-the-Loop Storytelling
职业:为机器在环讲故事构建创意写作助手
- 批准号:
2046248 - 财政年份:2021
- 资助金额:
$ 113.09万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321102 - 财政年份:2024
- 资助金额:
$ 113.09万 - 项目类别:
Standard Grant
RII Track-4:@NASA: Bluer and Hotter: From Ultraviolet to X-ray Diagnostics of the Circumgalactic Medium
RII Track-4:@NASA:更蓝更热:从紫外到 X 射线对环绕银河系介质的诊断
- 批准号:
2327438 - 财政年份:2024
- 资助金额:
$ 113.09万 - 项目类别:
Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
- 批准号:
2344489 - 财政年份:2024
- 资助金额:
$ 113.09万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
$ 113.09万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 113.09万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 113.09万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 113.09万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 113.09万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402815 - 财政年份:2024
- 资助金额:
$ 113.09万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 113.09万 - 项目类别:
Standard Grant














{{item.name}}会员




