EAGER: Predicting Domain-level Reading Comprehension Difficulty to Support Adult Learning
EAGER:预测领域级阅读理解难度以支持成人学习
基本信息
- 批准号:1748771
- 负责人:
- 金额:$ 17.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Regardless of their level of education, participants in the modern workforce are expected to be flexible in their ability to read and learn in new, often technical domains, including scientific subfields, medicine, policy, and care. Remarkably, however, there is little, if any, technological support for such learning, which often is dynamic and requires reading texts as needed rather than in an ordered curriculum as in classroom learning. This Early Grant for Exploratory Research addresses the need for technological support for adult learning in technical domains by exploring the feasibility of simulating the behavior of an expert reader in identifying important content and drawing inferences to connect rich background knowledge and the text at hand. Readers will be provided access to pilot implementations of the inferences and importance judgements of the simulated expert, to focus their attention and strengthen their comprehension of the text. This development of exploratory models of expert reader behavior relies on techniques for characterizing text vocabulary into technical and plain language by contrasting word occurrence statistics in the domain and in general text such as in a random sample of telephone conversations or news. It will also explore the adaptation of techniques for definition mining and for deriving prototypical event sequences and shallow ontologies from large volume of typical domain text.
无论他们的教育水平如何,现代劳动力的参与者都应该在新的,通常是技术领域,包括科学子领域,医学,政策和护理方面具有灵活的阅读和学习能力。然而,值得注意的是,这种学习几乎没有技术支持,这种学习往往是动态的,需要根据需要阅读文本,而不是像课堂学习那样在有序的课程中。这项探索性研究的早期补助金通过探索模拟专家读者在识别重要内容和推断以连接丰富的背景知识和手头文本方面的行为的可行性,解决了技术领域成人学习的技术支持需求。读者将获得模拟专家的推理和重要性判断的试点实施,以集中他们的注意力,加强他们对文本的理解。专家读者行为的探索性模型的这种发展依赖于通过对比该领域和一般文本(如电话交谈或新闻的随机样本)中的单词出现统计来将文本词汇表征为技术和普通语言的技术。它还将探讨适应技术的定义挖掘,并从大量的典型领域文本中获得原型事件序列和浅层本体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ani Nenkova其他文献
A Tableau Method for Graded Intersections of Modalities: A Case for Concept Languages
- DOI:
10.1023/a:1013097911573 - 发表时间:
2002-12-01 - 期刊:
- 影响因子:0.600
- 作者:
Ani Nenkova - 通讯作者:
Ani Nenkova
Ani Nenkova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ani Nenkova', 18)}}的其他基金
CHS: Medium: Collaborative Reearch: Bio-behavioral data analytics to enable personalized training of veterans for the future workforce
CHS:中:协作研究:生物行为数据分析,为未来的劳动力提供退伍军人的个性化培训
- 批准号:
1955721 - 财政年份:2020
- 资助金额:
$ 17.22万 - 项目类别:
Standard Grant
NAACL-HLT 2012 Student Workshop
NAACL-HLT 2012 学生研讨会
- 批准号:
1220521 - 财政年份:2012
- 资助金额:
$ 17.22万 - 项目类别:
Standard Grant
CI-P: Collaborative Research: Summarizing Opinion and Speaker Attitude in Speech
CI-P:协作研究:总结观点和演讲者在演讲中的态度
- 批准号:
1059257 - 财政年份:2011
- 资助金额:
$ 17.22万 - 项目类别:
Standard Grant
CAREER: Capturing Content and Linguistic Quality in Automatic Extractive and Abstractive Summarization
职业:在自动提取和抽象摘要中捕获内容和语言质量
- 批准号:
0953445 - 财政年份:2010
- 资助金额:
$ 17.22万 - 项目类别:
Continuing Grant
RI-Medium: Collaborative Research : Corpus-based Studies of Lexical, Acoustic, And Discourse Entrainment in Spoken Dialogue
RI-Medium:协作研究:基于语料库的口语对话中的词汇、声学和话语夹带研究
- 批准号:
0803159 - 财政年份:2008
- 资助金额:
$ 17.22万 - 项目类别:
Standard Grant
相似海外基金
Predicting how the inducible defences of large mammals to human predation shape spatial food web dynamics
预测大型哺乳动物对人类捕食的诱导防御如何塑造空间食物网动态
- 批准号:
EP/Y03614X/1 - 财政年份:2024
- 资助金额:
$ 17.22万 - 项目类别:
Research Grant
NSF PRFB FY 2023: Considering evolutionary responses to temperature variability when predicting risk to climate change and disease in amphibians
NSF PRFB 2023 财年:在预测气候变化和两栖动物疾病风险时考虑对温度变化的进化反应
- 批准号:
2305659 - 财政年份:2024
- 资助金额:
$ 17.22万 - 项目类别:
Fellowship Award
Predicting effects of interannual variability in climate and drought on plant community outcomes, resilience, and soil carbon using temporally replicated grassland reconstructions
使用临时复制的草地重建来预测气候和干旱的年际变化对植物群落结果、恢复力和土壤碳的影响
- 批准号:
2343738 - 财政年份:2024
- 资助金额:
$ 17.22万 - 项目类别:
Continuing Grant
Predicting abnormalities in abdominal organs through prognostic factors extracted from image data
通过从图像数据中提取的预后因素来预测腹部器官的异常
- 批准号:
24K21121 - 财政年份:2024
- 资助金额:
$ 17.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
R-Map - Mapping, understanding, assessing and predicting the effects of remote working arrangements in urban and rural areas
R-Map - 绘制、理解、评估和预测城乡地区远程工作安排的影响
- 批准号:
10106145 - 财政年份:2024
- 资助金额:
$ 17.22万 - 项目类别:
EU-Funded
Predicting future biodiversity of ecosystem service providers in Japan using new approaches to quantify and reduce uncertainty
使用量化和减少不确定性的新方法来预测日本生态系统服务提供者的未来生物多样性
- 批准号:
24K09176 - 财政年份:2024
- 资助金额:
$ 17.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CPS: Medium: Federated Learning for Predicting Electricity Consumption with Mixed Global/Local Models
CPS:中:使用混合全局/本地模型预测电力消耗的联合学习
- 批准号:
2317079 - 财政年份:2024
- 资助金额:
$ 17.22万 - 项目类别:
Standard Grant
Predicting emergence risk of future zoonotic viruses through computational learning
通过计算学习预测未来人畜共患病毒的出现风险
- 批准号:
MR/X019616/1 - 财政年份:2024
- 资助金额:
$ 17.22万 - 项目类别:
Fellowship
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 17.22万 - 项目类别:
Standard Grant
CAREER: Marine Debris at Coastlines: predicting sources from drift, dispersion, and beaching via experiments and multiscale stochastic models
职业:海岸线的海洋碎片:通过实验和多尺度随机模型预测漂移、分散和搁浅的来源
- 批准号:
2338221 - 财政年份:2024
- 资助金额:
$ 17.22万 - 项目类别:
Continuing Grant