Collaborative Research: CNS Core: Medium: Learning to Cache and Caching to Learn in High Performance Caching Systems
合作研究:CNS 核心:中:学习缓存以及在高性能缓存系统中学习缓存
基本信息
- 批准号:1955777
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Caching is fundamental to cloud computing and content distribution, and is important to the vast number of applications and services they support. Crucial performance metrics of a caching algorithm are its ability to quickly and accurately learn a changing popularity distribution. However, there is a serious disconnect between empirical studies using real-world traces that account for popularity changes, and analytical performance analysis results that assume a fixed popularity. A basic goal of this project is to develop a methodology based on online learning and reinforcement learning for caching algorithm design with provable performance guarantees. This enables the systematic design of caching algorithms that can be tailored to a variety of application contexts. The use-case of these algorithms is in high performance caching networks that support large-scale cloud applications and services. Emulation of high-performance caching systems to leverage and to empirically evaluate the online learning algorithms developed supports this goal, and provides a real-world context for the methodology developed. The results will also enhance the performance of content distribution platforms. At the same time the project develops fundamental theories that pertain to the area of machine learning, specifically to online learning. This project aims at optimally utilizing locally available memory and computing resources of caches, while ensuring provably good performance via fast and accurate learning of content popularity. This requires the conjunction of several mathematical tools to analyze online learning algorithms, as well as strong systems development skills to make the algorithms a reality. The project addresses these key challenges in two main themes. The first theme focuses on systematic design of distributed online learning in networks of caches using collaborative filtering for distributed identification of popular content, and multi-agent reinforcement learning for joint learning and content placement. The second theme focuses on building high performing caching systems using the algorithms developed in the first theme, and quantifying the impacts of the algorithms on real-world applications such as Hipster Shop, an open-source e-commerce website, and Spark data-analytics job pipelines. The immediate impact of this project is in creating high performance caching schemes that apply to cloud computing and content distribution networks. This project also advances the fundamental theory of online learning. The project includes an education plan focusing on machine learning and caching, and outreach in the form of summer camps and seminars for high school students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
缓存是云计算和内容分发的基础,对于它们所支持的大量应用程序和服务也很重要。 缓存算法的关键性能指标是它快速准确地了解不断变化的流行度分布的能力。然而,有一个严重的脱节之间的实证研究,使用现实世界的痕迹,占流行的变化,分析性能分析结果,假设一个固定的流行。 该项目的一个基本目标是开发一种基于在线学习和强化学习的方法,用于具有可证明性能保证的缓存算法设计。 这使得系统设计的缓存算法,可以定制各种应用程序的上下文。这些算法的用例是支持大规模云应用和服务的高性能缓存网络。 高性能缓存系统的仿真,以利用和经验评估开发的在线学习算法支持这一目标,并提供了一个现实世界的背景下开发的方法。 这些结果还将提高内容分发平台的性能。 与此同时,该项目开发了与机器学习领域相关的基础理论,特别是在线学习。该项目旨在优化利用本地可用的内存和高速缓存的计算资源,同时通过快速准确地学习内容流行度来确保可证明的良好性能。这需要结合几种数学工具来分析在线学习算法,以及强大的系统开发技能来实现算法。该项目在两个主题中应对这些关键挑战。第一个主题的重点是系统设计的分布式在线学习网络的缓存使用协同过滤的分布式识别流行的内容,和多智能体强化学习的联合学习和内容放置。第二个主题的重点是使用第一个主题中开发的算法构建高性能缓存系统,并量化算法对现实世界应用程序的影响,例如开源电子商务网站Hipster Shop和Spark数据分析作业管道。该项目的直接影响是创建适用于云计算和内容分发网络的高性能缓存方案。本项目还推进了在线学习的基本理论。该项目包括一个以机器学习和缓存为重点的教育计划,以及以夏令营和高中生研讨会的形式进行的推广活动。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Decentralized Cooperative Reinforcement Learning with Hierarchical Information Structure
- DOI:
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Hsu Kao;Chen-Yu Wei;V. Subramanian
- 通讯作者:Hsu Kao;Chen-Yu Wei;V. Subramanian
Bayesian Learning of Optimal Policies in Markov Decision Processes with Countably Infinite State-Space
可数无限状态空间马尔可夫决策过程中最优策略的贝叶斯学习
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Saghar Adler;Vijay Subramanian
- 通讯作者:Vijay Subramanian
Rarest-First with Probabilistic-Mode-Suppression (RFwPMS)
具有概率模式抑制的稀有优先 (RFwPMS)
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:2.5
- 作者:Nouman Khan;Mehrdad Moharrami;Vijay G. Subramanian
- 通讯作者:Vijay G. Subramanian
Private Information Compression in Dynamic Games among Teams
团队动态博弈中的私有信息压缩
- DOI:10.1109/cdc45484.2021.9683479
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Tang, Dengwang;Tavafoghi, Hamidreza;Subramanian, Vijay;Nayyar, Ashutosh;Teneketzis, Demosthenis
- 通讯作者:Teneketzis, Demosthenis
A Strong Duality Result for Cooperative Decentralized Constrained POMDPs
- DOI:10.1109/cdc49753.2023.10383989
- 发表时间:2023-12
- 期刊:
- 影响因子:0
- 作者:Nouman Khan;Vijay G. Subramanian
- 通讯作者:Nouman Khan;Vijay G. Subramanian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vijay Subramanian其他文献
Using Lactate Clearance at 6 hours and Glucose Metabolism as a Marker for Usability of Liver following Normothermic Machine Perfusion
以 6 小时时的乳酸清除率和葡萄糖代谢作为常温机械灌注后肝脏可用性的标志物
- DOI:
10.1016/j.ajt.2024.12.259 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:8.200
- 作者:
Vijay Subramanian;Philopateer Messeha;Olivia Walter;Arni Kumar;Emma Kotelnicki;Milana Mudra;Kaidyn White;Ashish Singhal;Kiran Dhanireddy - 通讯作者:
Kiran Dhanireddy
578: INTEGRATED ALCOHOL USE DISORDER CLINIC AS A STRATEGY TO REDUCE ALCOHOL RELAPSE AFTER EARLY LIVER TRANSPLANTATION IN PATIENTS WITH ALCOHOL RELATED LIVER DISEASE
- DOI:
10.1016/s0016-5085(22)63401-2 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:
- 作者:
Rashid Z. Syed;Saurabh Agrawal;Kawtar Al Khalloufi;Christopher Albers;Basem Alkurdi;Kristina Barber;Kiran Dhanireddy;Brenna J. Evans;Rachel Hogen;Nyingi Kemmer;Miguel Malespin;Marian Porubsky;Diego Reino;Vijay Subramanian;Christine Machado-Denis - 通讯作者:
Christine Machado-Denis
Factors Associated with Liver Cradle Compression Effect Following Normothermic Machine Perfusion
常温机械灌注后与肝脏摇篮压缩效应相关的因素
- DOI:
10.1016/j.ajt.2024.12.048 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:8.200
- 作者:
Vijay Subramanian;Grant Weiderman;Venkata Yeddula;Emma Kotelnicki;Milana Mudra;Kaidyn White;Kiran Dhanireddy - 通讯作者:
Kiran Dhanireddy
Combined cardiac procedures and orthotopic liver transplant in the era of machine perfusion
机器灌注时代的心脏联合手术和原位肝移植
- DOI:
10.1016/j.ajt.2024.12.212 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:8.200
- 作者:
Tara Barry;Vijay Subramanian;Rachel Hogen;Diego Reino;Lucian Lozonschi;Kiran Dhanireddy;Ashish Singhal - 通讯作者:
Ashish Singhal
Controlled Hypothermic Preservation of Donor Livers with Back- to-Base Normothermic Machine Perfusion Improves Clinical Outcomes and Facilitates Donor Pool Expansion
供肝的低温保存结合回基地常温机械灌注可改善临床结局并促进供肝库的扩展
- DOI:
10.1016/j.ajt.2024.12.258 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:8.200
- 作者:
Vijay Subramanian;Rachel Hogen;Ashish Singhal;Diego Reino;Kiran Dhanireddy - 通讯作者:
Kiran Dhanireddy
Vijay Subramanian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vijay Subramanian', 18)}}的其他基金
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
- 批准号:
2240981 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CIF: AF: Small: A Perturbed Markov Chains Approach to Studying Centrality, Mixing and Reinforcement Learning
CIF:AF:小:研究中心性、混合和强化学习的扰动马尔可夫链方法
- 批准号:
2008130 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Empowering prosumers in electricity markets through market design and learning
合作研究:CPS:中:通过市场设计和学习为电力市场中的产消者赋权
- 批准号:
2038416 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
The 6th Midwest Workshop on Control and Game Theory; Ann Arbor, Michigan
第六届中西部控制与博弈论研讨会;
- 批准号:
1738207 - 财政年份:2017
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: EARS: Creating an Ecosystem for Enhanced Spectrum Utilization Through Dynamic Market Mechanisms
合作研究:EARS:通过动态市场机制创建增强频谱利用率的生态系统
- 批准号:
1516075 - 财政年份:2014
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
III: Small: Inferring first movers in large-scale socio-technical networks
III:小型:推断大规模社会技术网络中的先行者
- 批准号:
1538827 - 财政年份:2014
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: EARS: Creating an Ecosystem for Enhanced Spectrum Utilization Through Dynamic Market Mechanisms
合作研究:EARS:通过动态市场机制创建增强频谱利用率的生态系统
- 批准号:
1443972 - 财政年份:2014
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
III: Small: Inferring first movers in large-scale socio-technical networks
III:小型:推断大规模社会技术网络中的先行者
- 批准号:
1219071 - 财政年份:2012
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2345339 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
- 批准号:
2242503 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
- 批准号:
2343959 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2341378 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: RCBP-RF: CNS: ESD4CDaT - Efficient System Design for Cancer Detection and Treatment
合作研究:CISE-MSI:RCBP-RF:CNS:ESD4CDaT - 癌症检测和治疗的高效系统设计
- 批准号:
2318573 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant