Collaborative Research: CPS: Medium: Empowering prosumers in electricity markets through market design and learning

合作研究:CPS:中:通过市场设计和学习为电力市场中的产消者赋权

基本信息

项目摘要

The availability of vast amounts of operational and end-user data in cyber-physical systems implies that paradigm improvements in monitoring and control can be attained via learning by many artificial intelligence agents despite them possessing vastly different abilities. Engaging this heterogeneous agent base in the context of the smart grid requires the use of hierarchical markets, wherein end-users participate in downstream markets collectively through aggregators, who in turn are coordinated by an upstream market. The goal of this project is to conduct a systematic study of such market-mediated learning and control. This project aims at much deeper levels of participation from end-users contributing electricity generation such as rooftop solar, shedding load via demand response, and providing storage capabilities such as electric vehicle batteries, to transform into reliable distributed energy resources (DER) at the level of wholesale markets. A methodological theme is multi-agent reinforcement learning (MARL) by agents that control physical systems via actions at different levels of the hierarchy. Underlying the whole project are well-founded physical models of the transmission and distribution grids, which provide structure to the problem domain and concrete use cases. This project facilitates a deeper level of decarbonization in the electricity sector, and contributes to climate change solutions by engineering a flat, interactive grid architecture that allows significant DERs to provide electricity services to both local and regional grids. Engagement with a grid-level market operator enables the project to address a problem space of immediate relevance to the current electricity grid. The project also includes the development of educational materials on data-analytics and energy systems. Intrinsic to the program are efforts at outreach to involve high-school students via demonstrations and lectures based on the technology developed.The goal of this project is a systematic and principled study of methods for hierarchical market-mediated learning and control, with the electric grid being the primary application domain. Multi-agent reinforcement learning (MARL) runs as a common methodological theme through the project, with strategic agents with varying information structures and concepts of rationality that control physical systems via actions at different levels of the hierarchy. The approach is different from studies on generic MARL algorithms in that attention is focused on well-founded physical models of the transmission and distribution grids, as well as the workings of the power system. The project is organized into three interdependent thrusts, namely, (i) Learning to bid as aggregators in wholesale markets, which studies dynamics of aggregators that provide supply offers and demand bids at the upstream market (wholesale level), while procuring these services from downstream DERs (retail level), (ii) Learning to incentivize retail users to contribute their resources, under which bounded rational agents learn to respond to a population-level distribution of other agents and incentives provided, and (iii) Evaluation and experimentation over a full-scale system emulator by integrating it with reinforcement learning tools. This project provides an architecture for DERs to provide electricity services to both local and regional grids, and hence contributes to developing solutions to climate change. Engagement with an independent system operator enables a focus on grid-specific issues, ensuring the applicability of the solutions to real-world problems. The impact is enhanced by specific minority inclusion activities, courses on computing tailored to broaden participation in the context of data-analytics and energy systems, and outreach to high-school students using demonstrations and lectures based on the project results.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
网络物理系统中大量的操作和最终用户数据的可用性意味着,尽管许多人工智能代理拥有截然不同的能力,但可以通过学习来实现监测和控制方面的范式改进。 在智能电网的背景下,这种异构的代理基础需要使用分层市场,其中最终用户通过聚合器集体参与下游市场,而聚合器又由上游市场协调。 本项目的目标是对这种以市场为中介的学习和控制进行系统的研究。 该项目旨在更深层次地参与最终用户的发电,如屋顶太阳能发电,通过需求响应减少负荷,并提供电动汽车电池等存储能力,以在批发市场一级转变为可靠的分布式能源(DER)。 一个方法论的主题是多代理强化学习(MARL)的代理控制物理系统通过行动在不同层次的层次结构。 整个项目的基础是传输和配电网的基础物理模型,这些模型为问题域和具体用例提供了结构。 该项目促进了电力部门更深层次的脱碳,并通过设计一个扁平的交互式电网架构,使重要的DER能够为当地和区域电网提供电力服务,为气候变化解决方案做出贡献。 与电网级市场运营商的合作使该项目能够解决与当前电网直接相关的问题空间。 该项目还包括编写关于数据分析和能源系统的教育材料。 该项目的核心是通过基于开发的技术的演示和讲座,努力让高中生参与进来。本项目的目标是系统地、原则性地研究以电网为主要应用领域的分层市场中介学习和控制方法。 多智能体强化学习(MARL)作为一个共同的方法论主题贯穿整个项目,具有不同信息结构和合理性概念的战略智能体通过层次结构不同级别的行动控制物理系统。 该方法是不同的通用MARL算法的研究中,注意力集中在有根据的物理模型的传输和配电网,以及电力系统的工作。 该项目分为三个相互依存的重点,即:㈠学习作为批发市场的集合商投标,研究在上游市场提供供应报价和需求投标的集合商的动态(批发一级),同时从下游的DER采购这些服务(ii)学习激励零售用户贡献他们的资源,有限理性的代理人学习响应人口水平分布的其他代理人和提供的激励措施,及(iii)评估和实验,通过将其与强化学习工具集成在一个全面的系统仿真器。 该项目提供了一个架构,供能源效率机构向地方和区域电网提供电力服务,从而有助于制定应对气候变化的解决方案。 与独立的系统运营商合作,可以专注于电网特定的问题,确保解决方案适用于现实世界的问题。 通过具体的少数民族包容活动、为扩大数据分析和能源系统背景下的参与而量身定制的计算课程,以及通过基于项目结果的演示和讲座向高中生进行宣传,增强了影响力。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响力审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Decentralized Cooperative Reinforcement Learning with Hierarchical Information Structure
  • DOI:
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hsu Kao;Chen-Yu Wei;V. Subramanian
  • 通讯作者:
    Hsu Kao;Chen-Yu Wei;V. Subramanian
Bayesian Learning of Optimal Policies in Markov Decision Processes with Countably Infinite State-Space
可数无限状态空间马尔可夫决策过程中最优策略的贝叶斯学习
Private Information Compression in Dynamic Games among Teams
团队动态博弈中的私有信息压缩
  • DOI:
    10.1109/cdc45484.2021.9683479
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tang, Dengwang;Tavafoghi, Hamidreza;Subramanian, Vijay;Nayyar, Ashutosh;Teneketzis, Demosthenis
  • 通讯作者:
    Teneketzis, Demosthenis
A Strong Duality Result for Cooperative Decentralized Constrained POMDPs
Rarest-First with Probabilistic-Mode-Suppression (RFwPMS)
具有概率模式抑制的稀有优先 (RFwPMS)
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vijay Subramanian其他文献

Using Lactate Clearance at 6 hours and Glucose Metabolism as a Marker for Usability of Liver following Normothermic Machine Perfusion
以 6 小时时的乳酸清除率和葡萄糖代谢作为常温机械灌注后肝脏可用性的标志物
  • DOI:
    10.1016/j.ajt.2024.12.259
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    8.200
  • 作者:
    Vijay Subramanian;Philopateer Messeha;Olivia Walter;Arni Kumar;Emma Kotelnicki;Milana Mudra;Kaidyn White;Ashish Singhal;Kiran Dhanireddy
  • 通讯作者:
    Kiran Dhanireddy
578: INTEGRATED ALCOHOL USE DISORDER CLINIC AS A STRATEGY TO REDUCE ALCOHOL RELAPSE AFTER EARLY LIVER TRANSPLANTATION IN PATIENTS WITH ALCOHOL RELATED LIVER DISEASE
  • DOI:
    10.1016/s0016-5085(22)63401-2
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rashid Z. Syed;Saurabh Agrawal;Kawtar Al Khalloufi;Christopher Albers;Basem Alkurdi;Kristina Barber;Kiran Dhanireddy;Brenna J. Evans;Rachel Hogen;Nyingi Kemmer;Miguel Malespin;Marian Porubsky;Diego Reino;Vijay Subramanian;Christine Machado-Denis
  • 通讯作者:
    Christine Machado-Denis
Factors Associated with Liver Cradle Compression Effect Following Normothermic Machine Perfusion
常温机械灌注后与肝脏摇篮压缩效应相关的因素
  • DOI:
    10.1016/j.ajt.2024.12.048
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    8.200
  • 作者:
    Vijay Subramanian;Grant Weiderman;Venkata Yeddula;Emma Kotelnicki;Milana Mudra;Kaidyn White;Kiran Dhanireddy
  • 通讯作者:
    Kiran Dhanireddy
Combined cardiac procedures and orthotopic liver transplant in the era of machine perfusion
机器灌注时代的心脏联合手术和原位肝移植
  • DOI:
    10.1016/j.ajt.2024.12.212
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    8.200
  • 作者:
    Tara Barry;Vijay Subramanian;Rachel Hogen;Diego Reino;Lucian Lozonschi;Kiran Dhanireddy;Ashish Singhal
  • 通讯作者:
    Ashish Singhal
Controlled Hypothermic Preservation of Donor Livers with Back- to-Base Normothermic Machine Perfusion Improves Clinical Outcomes and Facilitates Donor Pool Expansion
供肝的低温保存结合回基地常温机械灌注可改善临床结局并促进供肝库的扩展
  • DOI:
    10.1016/j.ajt.2024.12.258
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    8.200
  • 作者:
    Vijay Subramanian;Rachel Hogen;Ashish Singhal;Diego Reino;Kiran Dhanireddy
  • 通讯作者:
    Kiran Dhanireddy

Vijay Subramanian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vijay Subramanian', 18)}}的其他基金

CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240981
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CIF: AF: Small: A Perturbed Markov Chains Approach to Studying Centrality, Mixing and Reinforcement Learning
CIF:AF:小:研究中心性、混合和强化学习的扰动马尔可夫链方法
  • 批准号:
    2008130
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Learning to Cache and Caching to Learn in High Performance Caching Systems
合作研究:CNS 核心:中:学习缓存以及在高性能缓存系统中学习缓存
  • 批准号:
    1955777
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
The 6th Midwest Workshop on Control and Game Theory; Ann Arbor, Michigan
第六届中西部控制与博弈论研讨会;
  • 批准号:
    1738207
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EARS: Creating an Ecosystem for Enhanced Spectrum Utilization Through Dynamic Market Mechanisms
合作研究:EARS:通过动态市场机制创建增强频谱利用率的生态系统
  • 批准号:
    1516075
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
III: Small: Inferring first movers in large-scale socio-technical networks
III:小型:推断大规模社会技术网络中的先行者
  • 批准号:
    1538827
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: EARS: Creating an Ecosystem for Enhanced Spectrum Utilization Through Dynamic Market Mechanisms
合作研究:EARS:通过动态市场机制创建增强频谱利用率的生态系统
  • 批准号:
    1443972
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
III: Small: Inferring first movers in large-scale socio-technical networks
III:小型:推断大规模社会技术网络中的先行者
  • 批准号:
    1219071
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420846
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322534
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420847
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Small: Risk-Aware Planning and Control for Safety-Critical Human-CPS
合作研究:CPS:小型:安全关键型人类 CPS 的风险意识规划和控制
  • 批准号:
    2423130
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322533
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
  • 批准号:
    2311084
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
  • 批准号:
    2312092
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Sensor Attack Detection and Recovery in Cyber-Physical Systems
合作研究:CPS:中:网络物理系统中的传感器攻击检测和恢复
  • 批准号:
    2333980
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
  • 批准号:
    2401007
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Robust Sensing and Learning for Autonomous Driving Against Perceptual Illusion
CPS:中:协作研究:针对自动驾驶对抗知觉错觉的鲁棒感知和学习
  • 批准号:
    2235231
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了