III: Medium: Collaborative Research: Detecting and Controlling Network-based Spread of Hospital Acquired Infections
III:媒介:合作研究:检测和控制医院获得性感染的网络传播
基本信息
- 批准号:1955883
- 负责人:
- 金额:$ 41.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Hospital Acquired Infections (HAIs) are becoming a major challenge in health systems worldwide. Detection and control of HAIs are challenging and resource intensive, because of the high costs of patient treatment and disinfection of hospital facilities, making them fundamental public health problems. Despite its huge importance for hospitals, and the interest from both clinical and epidemiological researchers, these problems remain poorly understood. This project seeks to develop a novel network-based approach to improve hospital infection control using models and data science. This proposal brings together a highly multi-disciplinary team of researchers, and will lead to fundamental contributions in different areas of computer science (data mining, machine learning, graph mining, social networks, and optimization), network science (mathematical models and dynamical systems) and computational epidemiology (infectious diseases, and hospital epidemiology). The planned work has immediate implications for public health e.g. it can lead to new design policies and guidance for hospital infection control. Research findings will be incorporated into graduate level classes, tutorials, contests and workshops to bring computational biologists and data miners together. There are several challenges in studying HAI outbreaks primarily because the dynamics of HAI spread are much more complex than other diseases, such as influenza, due to many more factors and pathways involved. To overcome these issues, the project team will use a new class of two-mode cascade models, which have very different dynamics than the standard models, and have not been studied in data mining. The will investigate the following topics: (1) Surveillance, early detection of HAI outbreaks, (2) Designing interventions to control the spread of HAIs, and (3) Modeling and estimating exposure risk for HAIs. A unified set of problems will be considered, including modeling, detection, control and inference of missing infections. These are challenging stochastic optimization problems on networks, and the project team will invent rigorous and scalable methods using tools from data mining, machine learning and combinatorial optimization. Their research will use a unique fine-grained, large-scale data set of operations from a public hospital, supplemented with data from other hospitals. The results will be validated with the help of domain experts including epidemiologists and clinicians involved in hospital infection control.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
医院获得性感染(HAI)正在成为全球卫生系统的主要挑战。HAI的检测和控制是具有挑战性的和资源密集型的,因为患者治疗和医院设施消毒的成本高,使其成为基本的公共卫生问题。尽管它对医院非常重要,临床和流行病学研究人员也很感兴趣,但这些问题仍然知之甚少。该项目旨在开发一种新的基于网络的方法,使用模型和数据科学来改善医院感染控制。该提案汇集了一个高度多学科的研究人员团队,并将导致计算机科学(数据挖掘,机器学习,图形挖掘,社交网络和优化),网络科学(数学模型和动力系统)和计算流行病学(传染病和医院流行病学)的不同领域的基本贡献。计划中的工作对公共卫生有直接影响,例如,它可以导致新的设计政策和医院感染控制指南。研究结果将被纳入研究生课程,教程,竞赛和研讨会,使计算生物学家和数据挖掘者聚集在一起。在研究HAI爆发方面存在若干挑战,主要是因为HAI传播的动力学比其他疾病(如流感)复杂得多,因为涉及更多的因素和途径。为了克服这些问题,项目团队将使用一类新的双模式级联模型,这种模型与标准模型具有非常不同的动态特性,并且尚未在数据挖掘中进行过研究。将调查以下主题:(1)监测,HAI爆发的早期检测,(2)设计干预措施以控制HAI的传播,以及(3)模拟和估计HAI的暴露风险。一组统一的问题将被考虑,包括建模,检测,控制和推理失踪的感染。这些都是网络上具有挑战性的随机优化问题,项目团队将使用数据挖掘,机器学习和组合优化工具发明严格且可扩展的方法。他们的研究将使用一家公立医院独特的细粒度大规模手术数据集,并辅以其他医院的数据。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
When Rigidity Hurts: Soft Consistency Regularization for Probabilistic Hierarchical Time Series Forecasting
当刚性受到损害时:概率分层时间序列预测的软一致性正则化
- DOI:10.1145/3580305.3599547
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Kamarthi, Harshavardhan;Kong, Lingkai;Rodriguez, Alexander;Zhang, Chao;Prakash, B. Aditya
- 通讯作者:Prakash, B. Aditya
Provable Sensor Sets for Epidemic Detection over Networks with Minimum Delay
- DOI:10.1609/aaai.v36i9.21260
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Jack Heavey;Jiaming Cui;Chen Chen-Chen;B. Prakash;A. Vullikanti
- 通讯作者:Jack Heavey;Jiaming Cui;Chen Chen-Chen;B. Prakash;A. Vullikanti
Back2Future: Leveraging Backfill Dynamics for Improving Real-time Predictions in Future
Back2Future:利用回填动态改进未来的实时预测
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Kamarthi, Harshavardhan;Rodriguez, Alexander;Prakash, B. Aditya
- 通讯作者:Prakash, B. Aditya
Mapping Network States using Connectivity Queries
使用连接查询映射网络状态
- DOI:10.1109/bigdata50022.2020.9378355
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Rodriguez, Alexander;Adhikari, Bijaya;Gonzalez, Andres D.;Nicholson, Charles;Vullikanti, Anil;Prakash, B. Aditya
- 通讯作者:Prakash, B. Aditya
When in Doubt: Neural Non-Parametric Uncertainty Quantification for Epidemic Forecasting
- DOI:
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:Harshavardhan Kamarthi;Lingkai Kong;Alexander Rodr'iguez;Chao Zhang;B. Prakash
- 通讯作者:Harshavardhan Kamarthi;Lingkai Kong;Alexander Rodr'iguez;Chao Zhang;B. Prakash
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
B Aditya Prakash其他文献
B Aditya Prakash的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('B Aditya Prakash', 18)}}的其他基金
PIPP Phase I: BEHIVE - BEHavioral Interaction and Viral Evolution for Pandemic Prevention and Prediction
PIPP 第一阶段:BEHIVE - 用于流行病预防和预测的行为相互作用和病毒进化
- 批准号:
2200269 - 财政年份:2022
- 资助金额:
$ 41.6万 - 项目类别:
Standard Grant
Collaborative Research: National Symposium on PRedicting Emergence of Virulent Entities by Novel Technologies (PREVENT)
合作研究:利用新技术预测有毒实体出现的全国研讨会(预防)
- 批准号:
2115126 - 财政年份:2021
- 资助金额:
$ 41.6万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Using Phylodynamics and Line Lists for Adaptive COVID-19 Monitoring
RAPID:协作研究:使用系统动力学和线路列表进行自适应 COVID-19 监测
- 批准号:
2027862 - 财政年份:2020
- 资助金额:
$ 41.6万 - 项目类别:
Standard Grant
CAREER: Bridging the Data-Model Gap -- Leveraging Surveillance for Propagation Mining over Networks
职业:弥合数据模型差距——利用网络传播挖掘监控
- 批准号:
2028586 - 财政年份:2020
- 资助金额:
$ 41.6万 - 项目类别:
Continuing Grant
CAREER: Bridging the Data-Model Gap -- Leveraging Surveillance for Propagation Mining over Networks
职业:弥合数据模型差距——利用网络传播挖掘监控
- 批准号:
1750407 - 财政年份:2018
- 资助金额:
$ 41.6万 - 项目类别:
Continuing Grant
EAGER: Immunization in Influence and Virus Propagation on Large Networks
EAGER:大型网络上影响力和病毒传播的免疫
- 批准号:
1353346 - 财政年份:2013
- 资助金额:
$ 41.6万 - 项目类别:
Standard Grant
相似海外基金
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 41.6万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
$ 41.6万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 41.6万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 41.6万 - 项目类别:
Continuing Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 41.6万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2347592 - 财政年份:2023
- 资助金额:
$ 41.6万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
- 批准号:
2312862 - 财政年份:2023
- 资助金额:
$ 41.6万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312930 - 财政年份:2023
- 资助金额:
$ 41.6万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 41.6万 - 项目类别:
Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
- 批准号:
2310113 - 财政年份:2023
- 资助金额:
$ 41.6万 - 项目类别:
Standard Grant














{{item.name}}会员




