CAREER: Bridging the Data-Model Gap -- Leveraging Surveillance for Propagation Mining over Networks

职业:弥合数据模型差距——利用网络传播挖掘监控

基本信息

  • 批准号:
    2028586
  • 负责人:
  • 金额:
    $ 44.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-01-14 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

The long-term goal of the proposed research is to understand, manage efficiently, and utilize dynamical mechanisms like propagation on large networks, occurring across natural, social, and technological systems. Understanding such processes enables us to manipulate them for our benefit. Propagation and networks have numerous applications in areas as diverse as public health and epidemiology, systems biology, cyber security, viral marketing and social media---hence progress in this domain promises scientific, commercial and social benefits. The proposed research aims to develop extensible, data-driven frameworks for propagation-related problems getting more implementable and generalizable tools. The PI's investigations will lead to novel mining and learning problems and scalable techniques which can be applied to massive datasets, helping make more informed choices for future. Educational activities are also closely integrated with this research agenda, including integrating research with education through courses, tutorials, and other university programs. Most current work in propagation mining assume the existence of well-calibrated models. Performing model calibration is typically very expensive, and not robust. Indeed, in many situations it is not clear which parameterized model should be calibrated. However there is an increasing availability of surveillance data like online media and medical health records. The PI's approach is unique in the sense that the aim is to directly use surveillance data and formulate optimization problems based on the data and network together. The proposed problems include inventing data-driven immunization policies for diseases like influenza, automatically finding missing infections/activations in cascade datasets, and automatically learning graph summaries based on distributed feature representations of propagation data as well as the network. The PI proposes to develop a flexible and expressive framework for all these problems. In addition, the developed algorithms will be applied to various domains, leveraging multiple collaborations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
拟议研究的长期目标是理解、有效管理和利用动态机制,例如在自然、社会和技术系统中发生的大型网络上的传播。了解这些过程使我们能够为了我们的利益而操纵它们。传播和网络在公共卫生和流行病学、系统生物学、网络安全、病毒营销和社交媒体等各个领域都有广泛的应用,因此该领域的进步有望带来科学、商业和社会效益。拟议的研究旨在开发可扩展的数据驱动框架,以解决与传播相关的问题,获得更具可实施性和通用性的工具。 PI 的调查将带来新的挖掘和学习问题以及可应用于海量数据集的可扩展技术,帮助为未来做出更明智的选择。教育活动也与该研究议程紧密结合,包括通过课程、教程和其他大学项目将研究与教育结合起来。当前传播挖掘中的大多数工作都假设存在经过良好校准的模型。执行模型校准通常非常昂贵且不稳健。事实上,在许多情况下,并不清楚应该校准哪个参数化模型。然而,在线媒体和医疗健康记录等监测数据的可用性越来越多。 PI 的方法是独特的,因为其目的是直接使用监视数据并基于数据和网络共同制定优化问题。提出的问题包括为流感等疾病发明数据驱动的免疫策略,自动查找级联数据集中丢失的感染/激活,以及基于传播数据和网络的分布式特征表示自动学习图摘要。 PI 建议为所有这些问题开发一个灵活且富有表现力的框架。此外,开发的算法将利用多种合作应用于各个领域。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Back2Future: Leveraging Backfill Dynamics for Improving Real-time Predictions in Future
Back2Future:利用回填动态改进未来的实时预测
Mapping Network States using Connectivity Queries
使用连接查询映射网络状态
  • DOI:
    10.1109/bigdata50022.2020.9378355
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rodriguez, Alexander;Adhikari, Bijaya;Gonzalez, Andres D.;Nicholson, Charles;Vullikanti, Anil;Prakash, B. Aditya
  • 通讯作者:
    Prakash, B. Aditya
When in Doubt: Neural Non-Parametric Uncertainty Quantification for Epidemic Forecasting
  • DOI:
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harshavardhan Kamarthi;Lingkai Kong;Alexander Rodr'iguez;Chao Zhang;B. Prakash
  • 通讯作者:
    Harshavardhan Kamarthi;Lingkai Kong;Alexander Rodr'iguez;Chao Zhang;B. Prakash
Incorporating Expert Guidance in Epidemic Forecasting
将专家指导纳入疫情预测
CAMul: Calibrated and Accurate Multi-view Time-Series Forecasting
  • DOI:
    10.1145/3485447.3512037
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harshavardhan Kamarthi;Lingkai Kong;Alexander Rodr'iguez;Chao Zhang;B. Prakash
  • 通讯作者:
    Harshavardhan Kamarthi;Lingkai Kong;Alexander Rodr'iguez;Chao Zhang;B. Prakash
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

B Aditya Prakash其他文献

B Aditya Prakash的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('B Aditya Prakash', 18)}}的其他基金

PIPP Phase I: BEHIVE - BEHavioral Interaction and Viral Evolution for Pandemic Prevention and Prediction
PIPP 第一阶段:BEHIVE - 用于流行病预防和预测的行为相互作用和病毒进化
  • 批准号:
    2200269
  • 财政年份:
    2022
  • 资助金额:
    $ 44.31万
  • 项目类别:
    Standard Grant
Collaborative Research: National Symposium on PRedicting Emergence of Virulent Entities by Novel Technologies (PREVENT)
合作研究:利用新技术预测有毒实体出现的全国研讨会(预防)
  • 批准号:
    2115126
  • 财政年份:
    2021
  • 资助金额:
    $ 44.31万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Detecting and Controlling Network-based Spread of Hospital Acquired Infections
III:媒介:合作研究:检测和控制医院获得性感染的网络传播
  • 批准号:
    1955883
  • 财政年份:
    2020
  • 资助金额:
    $ 44.31万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Using Phylodynamics and Line Lists for Adaptive COVID-19 Monitoring
RAPID:协作研究:使用系统动力学和线路列表进行自适应 COVID-19 监测
  • 批准号:
    2027862
  • 财政年份:
    2020
  • 资助金额:
    $ 44.31万
  • 项目类别:
    Standard Grant
CAREER: Bridging the Data-Model Gap -- Leveraging Surveillance for Propagation Mining over Networks
职业:弥合数据模型差距——利用网络传播挖掘监控
  • 批准号:
    1750407
  • 财政年份:
    2018
  • 资助金额:
    $ 44.31万
  • 项目类别:
    Continuing Grant
EAGER: Immunization in Influence and Virus Propagation on Large Networks
EAGER:大型网络上影响力和病毒传播的免疫
  • 批准号:
    1353346
  • 财政年份:
    2013
  • 资助金额:
    $ 44.31万
  • 项目类别:
    Standard Grant

相似海外基金

Bridging the Gender Data Gap: Using Census Data to Understand Gender Inequalities Across the UK
缩小性别数据差距:利用人口普查数据了解英国各地的性别不平等
  • 批准号:
    ES/Z502753/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.31万
  • 项目类别:
    Research Grant
eMB: Bridging the Gap Between Agent Based Models of Complex Biological Phenomena and Real-World Data Using Surrogate Models
eMB:使用代理模型弥合基于代理的复杂生物现象模型与真实世界数据之间的差距
  • 批准号:
    2324818
  • 财政年份:
    2023
  • 资助金额:
    $ 44.31万
  • 项目类别:
    Standard Grant
Bridging the Gap: Using Foreign Real-World Data to Inform Interchangeable Biosimilar Approvals
弥合差距:利用国外真实世界数据为可互换生物仿制药的批准提供信息
  • 批准号:
    10832215
  • 财政年份:
    2023
  • 资助金额:
    $ 44.31万
  • 项目类别:
Bridging clinical trial and real-world data via machine learning to advance rheumatoid arthritis treatment strategies
通过机器学习连接临床试验和真实世界数据,以推进类风湿性关节炎的治疗策略
  • 批准号:
    10652251
  • 财政年份:
    2022
  • 资助金额:
    $ 44.31万
  • 项目类别:
CAREER: Bridging the Global Gap on Understanding Downburst Impacts on Buildings: Field Data-Modeling Research and Education for More Resilient Communities
职业:弥合理解下击暴流对建筑物影响的全球差距:为更具复原力的社区进行现场数据建模研究和教育
  • 批准号:
    2146277
  • 财政年份:
    2022
  • 资助金额:
    $ 44.31万
  • 项目类别:
    Continuing Grant
Bridging clinical trial and real-world data via machine learning to advance rheumatoid arthritis treatment strategies
通过机器学习连接临床试验和真实世界数据,以推进类风湿性关节炎的治疗策略
  • 批准号:
    10339668
  • 财政年份:
    2022
  • 资助金额:
    $ 44.31万
  • 项目类别:
Bridging dataset generation to enable integrated data analysis and interpretation across HuBMAP tissues
桥接数据集生成以实现跨 HuBMAP 组织的集成数据分析和解释
  • 批准号:
    10672692
  • 财政年份:
    2022
  • 资助金额:
    $ 44.31万
  • 项目类别:
Bridging the gap between biological data and mathematical models, with Topological Data Analysis
通过拓扑数据分析弥合生物数据和数学模型之间的差距
  • 批准号:
    2580842
  • 财政年份:
    2021
  • 资助金额:
    $ 44.31万
  • 项目类别:
    Studentship
Bridging the gaps between data collection and prediction at thunderstorm scales
缩小雷暴规模数据收集和预测之间的差距
  • 批准号:
    RGPIN-2017-04475
  • 财政年份:
    2021
  • 资助金额:
    $ 44.31万
  • 项目类别:
    Discovery Grants Program - Individual
Bridging Gaps in the ELSI of Data Science Health Research in Nigeria (BridgELSI)
缩小尼日利亚数据科学健康研究 ELSI 的差距 (BridgELSI)
  • 批准号:
    10308577
  • 财政年份:
    2021
  • 资助金额:
    $ 44.31万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了