Collaborative Research: CNS Core: Medium: Network-Enabled Cooperative Perception for Future Autonomous Vehicles
合作研究:中枢神经系统核心:中:未来自动驾驶汽车的网络协作感知
基本信息
- 批准号:1956445
- 负责人:
- 金额:$ 90万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Annually, road accidents contribute to approximately 1.35 million fatalities globally. Automated driving and driver assist technology can greatly increase vehicular safety. However, for these technologies, ensuring dependability over a broad set of unusual traffic situations remains a key challenge. To be socially acceptable, these technologies must match or exceed human driving safety levels (e.g. 100 million miles between fatalities). Today, each autonomous vehicle relies on its own sensors to perceive the environment and make independent driving decisions. Unfortunately, these sensors rely on line-of-sight perception and a vehicle's view can be blocked by other vehicles. With advanced wireless communication technologies such as 5G and Qualcomm's Cellular-V2X Technologies, vehicles will be able to share their sensor data with other vehicles, either directly or using roadside infrastructure, so that vehicles can effectively see through obstacles, a capability we call network-enabled cooperative perception. While network-enabled cooperative perception is a compelling technology, the network remains a fundamental bottleneck. Today's vehicular communication technologies can, in practice, achieve about 6-10 Mbps, but advanced vehicular sensors generate hundreds of Mbps of raw data. This project seeks to resolve the tension between the richness of the raw sensor data and the network bottleneck, while scaling network-enabled cooperative perception to extremely dense traffic situations with multi-modal traffic such as pedestrians, bicycles, three-wheelers, trucks, cars etc. in which not all participants may be sensor-equipped. The project will develop abstractions, algorithms, and tools for network-enabled cooperative perception at scale, building upon an abstraction called a glimpse, which is a processed representation of a part of a vehicle's sensor view. Glimpses can represent individual objects within the view, or a grid in 3D space, and can be represented at different granularities that trade-off bandwidth for detail. Given this abstraction, the project will develop: methods to determine, in a complex and highly dynamic traffic setting, which glimpse representations are needed for which vehicles and by when; scheduling algorithms to coordinate the transmission of these glimpses to vehicles while respecting channel capacity constraints; methods to train machine learning models to make control decisions using glimpse-enhanced composite views; and techniques to ensure robustness to glimpse poisoning. Beyond the societal advantages resulting from reliable autonomous driving technology as enabled by network-enabled cooperative perception, the project will incorporate the results of the research into curricula, participants will mentor undergraduates and contribute to efforts to broader participation in computing, specifically seeking to expose students from under-represented groups in the Crenshaw area of South-Central Los Angeles, and students in the Montebello Unified School district to exciting topics in computing. Collaboration with General Motors will ease the path towards technology transfer and will expose PhD students to topics relevant to automotive systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
每年,全球约有135万人死于道路事故。自动驾驶和驾驶员辅助技术可以大大提高车辆的安全性。然而,对于这些技术来说,确保在广泛的异常流量情况下的可靠性仍然是一个关键挑战。为了让社会接受,这些技术必须达到或超过人类驾驶安全水平(例如,死亡之间的1亿英里)。如今,每辆自动驾驶汽车都依靠自己的传感器来感知环境并做出独立的驾驶决策。不幸的是,这些传感器依赖于视线感知,车辆的视野可能会被其他车辆阻挡。借助5G和高通Cellular-V2X技术等先进的无线通信技术,车辆将能够直接或使用路边基础设施与其他车辆共享传感器数据,从而使车辆能够有效地穿透障碍物,这种能力我们称之为网络支持的合作感知。 虽然网络支持的合作感知是一项引人注目的技术,但网络仍然是一个根本的瓶颈。今天的车载通信技术实际上可以达到大约6-10 Mbps,但先进的车载传感器会产生数百Mbps的原始数据。该项目旨在解决原始传感器数据的丰富性和网络瓶颈之间的紧张关系,同时将网络启用的协作感知扩展到具有多模式交通的极其密集的交通情况,例如行人,自行车,三轮车,卡车,汽车等,其中并非所有参与者都配备了传感器。该项目将开发抽象,算法和工具,用于大规模的网络支持的合作感知,建立在称为一瞥的抽象基础上,这是车辆传感器视图的一部分的处理表示。一瞥可以表示视图中的单个对象,也可以表示3D空间中的网格,并且可以以不同的粒度表示,以权衡细节的带宽。鉴于这种抽象,该项目将开发:在复杂和高度动态的交通环境中确定哪些车辆何时需要哪些瞥见表示的方法;在尊重信道容量限制的同时协调这些瞥见到车辆的传输的调度算法;训练机器学习模型的方法,以使用瞥见增强的复合视图做出控制决策;以及确保对一瞥中毒的鲁棒性的技术。除了由网络支持的合作感知实现的可靠自动驾驶技术所带来的社会优势之外,该项目还将把研究结果纳入课程,参与者将指导本科生,并为更广泛地参与计算做出贡献,特别是寻求让来自中南洛杉矶Crenshaw地区代表性不足的群体的学生,和学生在蒙特贝洛联合学区的令人兴奋的主题计算。与通用汽车的合作将简化技术转让的道路,并将使博士生接触与汽车系统相关的主题。该奖项反映了NSF的法定使命,并且通过使用基金会的知识价值和更广泛的影响进行评估,被认为值得支持审查标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AutoCast: scalable infrastructure-less cooperative perception for distributed collaborative driving
AutoCast:可扩展的无基础设施的协作感知,用于分布式协作驾驶
- DOI:10.1145/3498361.3538925
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Qiu, Hang;Huang, Po-Han;Asavisanu, Namo;Liu, Xiaochen;Psounis, Konstantinos;Govindan, Ramesh
- 通讯作者:Govindan, Ramesh
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ramesh Govindan其他文献
Guest Editorial: Special Issue on Wireless Sensor Networks
- DOI:
10.1007/s11036-005-1560-2 - 发表时间:
2005-08-01 - 期刊:
- 影响因子:2.000
- 作者:
Ramesh Govindan;Parmesh Ramanathan;Krishna Sivalingam - 通讯作者:
Krishna Sivalingam
Sensornet
传感器网
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Rodney Topor;Kenneth Salem;Amarnath Gupta;K. Goda;John F. Gehrke;N. Palmer;Mohamed Sharaf;Alexandros Labrinidis;J. Roddick;Ariel Fuxman;Renée J. Miller;Wang;Anastasios Kementsietsidis;Philippe Bonnet;D. Shasha;Ronald Peikert;Bertram Ludäscher;S. Bowers;T. McPhillips;Harald Naumann;K. Voruganti;J. Domingo;Ben Carterette;Panagiotis G. Ipeirotis;Marcelo Arenas;Y. Manolopoulos;Y. Theodoridis;V. Tsotras;B. Carminati;Jan Jurjens;Eduardo B. Fernandez;Murat Kantarcıoǧlu;Jaideep Vaidya;Indrakshi Ray;Athena Vakali;Cristina Sirangelo;E. Pitoura;Himanshu Gupta;Surajit Chaudhuri;G. Weikum;Ulf Leser;David W. Embley;Fausto Giunchiglia;P. Shvaiko;Mikalai Yatskevich;Edward Y. Chang;Christine Parent;S. Spaccapietra;E. Zimányi;G. Anadiotis;S. Kotoulas;Ronny Siebes;Grigoris Antoniou;D. Plexousakis;J. Bailey;François Bry;Tim Furche;Sebastian Schaffert;David Martin;Gregory D. Speegle;Krithi Ramamritham;P. Chrysanthis;Kai;Stéphane Bressan;S. Abiteboul;D. Suciu;G. Dobbie;Tok Wang Ling;Sugato Basu;Ramesh Govindan;Michael H. Böhlen;C. S. Jensen;Jianyong Wang;K. Vidyasankar;A. Chan;Serge Mankovski;S. Elnikety;P. Valduriez;Yannis Velegrakis;Mario A. Nascimento;Michael Huggett;Andrew U. Frank;Yanchun Zhang;Guandong Xu;R. Snodgrass;Alan Fekete;Marcus Herzog;Konstantinos Morfonios;Y. Ioannidis;E. Wohlstadter;M. Matera;F. Schwagereit;Steffen Staab;Keir Fraser;Jingren Zhou;M. Mokbel;Walid G. Aref;Mirella M. Moro;Markus Schneider;Panos Kalnis;Gabriel Ghinita;Michael F. Goodchild;Shashi Shekhar;James Kang;Vijayaprasath Gandhi;Nikos Mamoulis;Betsy George;Michel Scholl;Agnès Voisard;Ralf Hartmut Güting;Yufei Tao;Dimitris Papadias;Peter Revesz;G. Kollios;E. Frentzos;Apostolos N. Papadopoulos;Bernhard Thalheim;Jovan Pehcevski;Benjamin Piwowarski;S. Theodoridis;Konstantinos Koutroumbas;George Karabatis;Don Chamberlin;Philip A. Bernstein;Michael H. Böhlen;J. Gamper;Ping Li;Kazimierz Subieta;S. Harizopoulos;Ethan Zhang;Yi Zhang;Theodore Johnson;Hans;S. Fienberg;Jiashun Jin;Radu Sion;C. Paice;Nikos Hardavellas;Ippokratis Pandis;Edie M. Rasmussen;Hiroshi Yoshida;G. Graefe;Bernd Reiner;Karl Hahn;K. Wada;T. Risch;Jiawei Han;Bolin Ding;Lukasz Golab;Michael Stonebraker;Bibudh Lahiri;Srikanta Tirthapura;Erik Vee;Yanif Ahmad;U. Çetintemel;Mitch Cherniack;S. Zdonik;Mariano P. Consens;M. Lalmas;R. Baeza;D. Hiemstra;Peer Krögerand;Arthur Zimek;Nick Craswell;Carson Kai;Maxime Crochemore;Thierry Lecroq;Arie Shoshani;Jimmy Lin;Hwanjo Yu;David B. Lomet;H. Hinterberger;Ninghui Li;Phillip B. Gibbons;Mouna Kacimi;Thomas Neumann - 通讯作者:
Thomas Neumann
CloudCluster: Unearthing the Functional Structure of a Cloud Service
CloudCluster:挖掘云服务的功能结构
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Weiwu Pang;Sourav Panda;Muhammad Jehangir Amjad;Christophe Diot;Ramesh Govindan - 通讯作者:
Ramesh Govindan
A dual-reporter fluorescent imaging approach can be used to estimate sentinel lymph node tumor burden
双报告荧光成像方法可用于估计前哨淋巴结肿瘤负荷
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
K. Tichauer;K. Samkoe;J. Gunn;Ramesh Govindan;A. Viswanathan;P. Hoopes;T. Hasan;P. Kaufman;B. Pogue - 通讯作者:
B. Pogue
Operational information content sum capacity: From theory to practice
- DOI:
10.1016/j.comnet.2014.08.017 - 发表时间:
2014-12-24 - 期刊:
- 影响因子:
- 作者:
Ertugrul N. Ciftcioglu;Antonios Michaloliakos;Aylin Yener;Konstantinos Psounis;Thomas F. La Porta;Ramesh Govindan - 通讯作者:
Ramesh Govindan
Ramesh Govindan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ramesh Govindan', 18)}}的其他基金
Collaborative Research: CNS Core: Medium: Panoptes: Next Generation Multi-Perspective Video Delivery at Internet Scale
合作研究:CNS 核心:媒介:Panoptes:互联网规模的下一代多视角视频传输
- 批准号:
1956190 - 财政年份:2020
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
CNS Core: Large: Collaborative Research: Network Design Automation
CNS 核心:大型:协作研究:网络设计自动化
- 批准号:
1901523 - 财政年份:2019
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
NeTS: Large: Collaborative Research:Programmable Inter-domain Observation and Control
NeTS:大型:协作研究:可编程域间观测与控制
- 批准号:
1413978 - 财政年份:2014
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
CPS: Synergy: Collaborative Research: Harnessing the Automotive Infoverse
CPS:协同:协作研究:利用汽车信息宇宙
- 批准号:
1330118 - 财政年份:2013
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
NeTS: Medium: Collaborative Research: Systematic Analysis of Protocol Implementations
NeTS:媒介:协作研究:协议实现的系统分析
- 批准号:
1162240 - 财政年份:2012
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
EAGER: Collaborative Research: Toward An Adaptive Programming System for Cloud-Enabled Smartphone Applications
EAGER:协作研究:面向云智能手机应用程序的自适应编程系统
- 批准号:
1048824 - 财政年份:2010
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
NetSE: Medium: Collaborative Research: Green Edge Networks
NetSE:媒介:协作研究:绿色边缘网络
- 批准号:
0905596 - 财政年份:2009
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: Design and Run-time Techniques for Physically Coupled Software
协作研究:物理耦合软件的设计和运行技术
- 批准号:
0820230 - 财政年份:2008
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
NeTS-NOSS: Collaborative Research: Lightweight Monitoring Tools for Sensor Networks
NeTS-NOSS:协作研究:传感器网络的轻量级监控工具
- 批准号:
0627155 - 财政年份:2006
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
NeTS-NOSS: Tenet: An Architecture for Tiered Embedded Networks
NeTS-NOSS:宗旨:分层嵌入式网络架构
- 批准号:
0520235 - 财政年份:2005
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2345339 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
- 批准号:
2242503 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
- 批准号:
2343959 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2341378 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
- 批准号:
2409008 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant