CPS: Synergy: Collaborative Research: Harnessing the Automotive Infoverse

CPS:协同:协作研究:利用汽车信息宇宙

基本信息

  • 批准号:
    1330118
  • 负责人:
  • 金额:
    $ 46.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-10-01 至 2019-09-30
  • 项目状态:
    已结题

项目摘要

Until now, the cyber component of automobiles has consisted of control algorithms and associated software for vehicular subsystems designed to achieve one or more performance, efficiency, reliability, comfort, or safety goals, primarily based on short-term intrinsic vehicle sensor data. However, there exist many extrinsic factors that can affect the degree to which these goals can be achieved. These factors can be determined from: longer-term traces of in-built sensor data that can be abstracted as triplines, socialized versions of these that are shared amongst vehicle users, and online databases. These three sources of information collectively constitute the automotive infoverse.This project harnesses this automotive infoverse to achieve these goals through high-confidence vehicle tuning and driver feedback decisions. Specifically, the project develops software called Headlight that permits the rapid development of apps that use the infoverse to achieve one or more goals. Advisory apps can provide feedback to the driver in order to ensure better fuel efficiency, while auto-tuning goals can set car parameters to promote safety. Allowing vehicles and such apps to share vehicle data with others and to use extrinsic information results in novel information processing, assurance, and privacy challenges. The project develops methods, algorithms and models to address these challenges.Broader Impact - This project can have significant societal impact by reducing carbon emissions and improving vehicular safety, can spur innovation in tuning methods and encourage researchers to experiment with this class of cyber-physical systems. The active participation of General Motors will strongly facilitate technology transfer. The program has outreach through internships, course material, high school and undergraduate involvement, and through creating an open infrastructure usable by diverse developers.
到目前为止,汽车的网络组件主要由车辆子系统的控制算法和相关软件组成,旨在实现一个或多个性能、效率、可靠性、舒适性或安全性目标,主要基于车辆传感器的短期内在数据。然而,存在许多外部因素会影响这些目标的实现程度。这些因素可以从以下几个方面来确定:可以抽象为三线的内置传感器数据的长期轨迹,在车辆用户之间共享的这些数据的社会化版本,以及在线数据库。这三个信息来源共同构成了汽车逆信息。该项目利用这种汽车逆操作,通过高可信度的车辆调整和驾驶员反馈决策来实现这些目标。具体来说,该项目开发了一款名为Headlight的软件,该软件允许快速开发应用程序,使用反转来实现一个或多个目标。咨询应用程序可以向驾驶员提供反馈,以确保更好的燃油效率,而自动调整目标可以设置汽车参数,以提高安全性。允许车辆和此类应用与他人共享车辆数据并使用外部信息会导致新的信息处理、保证和隐私挑战。该项目开发方法、算法和模型来应对这些挑战。更广泛的影响——该项目可以通过减少碳排放和提高车辆安全性来产生重大的社会影响,可以刺激调谐方法的创新,并鼓励研究人员对这类网络物理系统进行实验。通用汽车公司的积极参与将有力地促进技术转让。该项目通过实习、课程材料、高中和本科生的参与,以及通过创建一个可供不同开发者使用的开放基础设施进行推广。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ramesh Govindan其他文献

Guest Editorial: Special Issue on Wireless Sensor Networks
  • DOI:
    10.1007/s11036-005-1560-2
  • 发表时间:
    2005-08-01
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Ramesh Govindan;Parmesh Ramanathan;Krishna Sivalingam
  • 通讯作者:
    Krishna Sivalingam
Sensornet
传感器网
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rodney Topor;Kenneth Salem;Amarnath Gupta;K. Goda;John F. Gehrke;N. Palmer;Mohamed Sharaf;Alexandros Labrinidis;J. Roddick;Ariel Fuxman;Renée J. Miller;Wang;Anastasios Kementsietsidis;Philippe Bonnet;D. Shasha;Ronald Peikert;Bertram Ludäscher;S. Bowers;T. McPhillips;Harald Naumann;K. Voruganti;J. Domingo;Ben Carterette;Panagiotis G. Ipeirotis;Marcelo Arenas;Y. Manolopoulos;Y. Theodoridis;V. Tsotras;B. Carminati;Jan Jurjens;Eduardo B. Fernandez;Murat Kantarcıoǧlu;Jaideep Vaidya;Indrakshi Ray;Athena Vakali;Cristina Sirangelo;E. Pitoura;Himanshu Gupta;Surajit Chaudhuri;G. Weikum;Ulf Leser;David W. Embley;Fausto Giunchiglia;P. Shvaiko;Mikalai Yatskevich;Edward Y. Chang;Christine Parent;S. Spaccapietra;E. Zimányi;G. Anadiotis;S. Kotoulas;Ronny Siebes;Grigoris Antoniou;D. Plexousakis;J. Bailey;François Bry;Tim Furche;Sebastian Schaffert;David Martin;Gregory D. Speegle;Krithi Ramamritham;P. Chrysanthis;Kai;Stéphane Bressan;S. Abiteboul;D. Suciu;G. Dobbie;Tok Wang Ling;Sugato Basu;Ramesh Govindan;Michael H. Böhlen;C. S. Jensen;Jianyong Wang;K. Vidyasankar;A. Chan;Serge Mankovski;S. Elnikety;P. Valduriez;Yannis Velegrakis;Mario A. Nascimento;Michael Huggett;Andrew U. Frank;Yanchun Zhang;Guandong Xu;R. Snodgrass;Alan Fekete;Marcus Herzog;Konstantinos Morfonios;Y. Ioannidis;E. Wohlstadter;M. Matera;F. Schwagereit;Steffen Staab;Keir Fraser;Jingren Zhou;M. Mokbel;Walid G. Aref;Mirella M. Moro;Markus Schneider;Panos Kalnis;Gabriel Ghinita;Michael F. Goodchild;Shashi Shekhar;James Kang;Vijayaprasath Gandhi;Nikos Mamoulis;Betsy George;Michel Scholl;Agnès Voisard;Ralf Hartmut Güting;Yufei Tao;Dimitris Papadias;Peter Revesz;G. Kollios;E. Frentzos;Apostolos N. Papadopoulos;Bernhard Thalheim;Jovan Pehcevski;Benjamin Piwowarski;S. Theodoridis;Konstantinos Koutroumbas;George Karabatis;Don Chamberlin;Philip A. Bernstein;Michael H. Böhlen;J. Gamper;Ping Li;Kazimierz Subieta;S. Harizopoulos;Ethan Zhang;Yi Zhang;Theodore Johnson;Hans;S. Fienberg;Jiashun Jin;Radu Sion;C. Paice;Nikos Hardavellas;Ippokratis Pandis;Edie M. Rasmussen;Hiroshi Yoshida;G. Graefe;Bernd Reiner;Karl Hahn;K. Wada;T. Risch;Jiawei Han;Bolin Ding;Lukasz Golab;Michael Stonebraker;Bibudh Lahiri;Srikanta Tirthapura;Erik Vee;Yanif Ahmad;U. Çetintemel;Mitch Cherniack;S. Zdonik;Mariano P. Consens;M. Lalmas;R. Baeza;D. Hiemstra;Peer Krögerand;Arthur Zimek;Nick Craswell;Carson Kai;Maxime Crochemore;Thierry Lecroq;Arie Shoshani;Jimmy Lin;Hwanjo Yu;David B. Lomet;H. Hinterberger;Ninghui Li;Phillip B. Gibbons;Mouna Kacimi;Thomas Neumann
  • 通讯作者:
    Thomas Neumann
CloudCluster: Unearthing the Functional Structure of a Cloud Service
CloudCluster:挖掘云服务的功能结构
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Weiwu Pang;Sourav Panda;Muhammad Jehangir Amjad;Christophe Diot;Ramesh Govindan
  • 通讯作者:
    Ramesh Govindan
A dual-reporter fluorescent imaging approach can be used to estimate sentinel lymph node tumor burden
双报告荧光成像方法可用于估计前哨淋巴结肿瘤负荷
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Tichauer;K. Samkoe;J. Gunn;Ramesh Govindan;A. Viswanathan;P. Hoopes;T. Hasan;P. Kaufman;B. Pogue
  • 通讯作者:
    B. Pogue
Operational information content sum capacity: From theory to practice
  • DOI:
    10.1016/j.comnet.2014.08.017
  • 发表时间:
    2014-12-24
  • 期刊:
  • 影响因子:
  • 作者:
    Ertugrul N. Ciftcioglu;Antonios Michaloliakos;Aylin Yener;Konstantinos Psounis;Thomas F. La Porta;Ramesh Govindan
  • 通讯作者:
    Ramesh Govindan

Ramesh Govindan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ramesh Govindan', 18)}}的其他基金

Collaborative Research: CNS Core: Medium: Panoptes: Next Generation Multi-Perspective Video Delivery at Internet Scale
合作研究:CNS 核心:媒介:Panoptes:互联网规模的下一代多视角视频传输
  • 批准号:
    1956190
  • 财政年份:
    2020
  • 资助金额:
    $ 46.19万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Medium: Network-Enabled Cooperative Perception for Future Autonomous Vehicles
合作研究:中枢神经系统核心:中:未来自动驾驶汽车的网络协作感知
  • 批准号:
    1956445
  • 财政年份:
    2020
  • 资助金额:
    $ 46.19万
  • 项目类别:
    Continuing Grant
CNS Core: Large: Collaborative Research: Network Design Automation
CNS 核心:大型:协作研究:网络设计自动化
  • 批准号:
    1901523
  • 财政年份:
    2019
  • 资助金额:
    $ 46.19万
  • 项目类别:
    Continuing Grant
NeTS: Large: Collaborative Research:Programmable Inter-domain Observation and Control
NeTS:大型:协作研究:可编程域间观测与控制
  • 批准号:
    1413978
  • 财政年份:
    2014
  • 资助金额:
    $ 46.19万
  • 项目类别:
    Continuing Grant
NeTS: Medium: Collaborative Research: Systematic Analysis of Protocol Implementations
NeTS:媒介:协作研究:协议实现的系统分析
  • 批准号:
    1162240
  • 财政年份:
    2012
  • 资助金额:
    $ 46.19万
  • 项目类别:
    Continuing Grant
EAGER: Collaborative Research: Toward An Adaptive Programming System for Cloud-Enabled Smartphone Applications
EAGER:协作研究:面向云智能手机应用程序的自适应编程系统
  • 批准号:
    1048824
  • 财政年份:
    2010
  • 资助金额:
    $ 46.19万
  • 项目类别:
    Standard Grant
NetSE: Medium: Collaborative Research: Green Edge Networks
NetSE:媒介:协作研究:绿色边缘网络
  • 批准号:
    0905596
  • 财政年份:
    2009
  • 资助金额:
    $ 46.19万
  • 项目类别:
    Standard Grant
Collaborative Research: Design and Run-time Techniques for Physically Coupled Software
协作研究:物理耦合软件的设计和运行技术
  • 批准号:
    0820230
  • 财政年份:
    2008
  • 资助金额:
    $ 46.19万
  • 项目类别:
    Standard Grant
NeTS-NOSS: Collaborative Research: Lightweight Monitoring Tools for Sensor Networks
NeTS-NOSS:协作研究:传感器网络的轻量级监控工具
  • 批准号:
    0627155
  • 财政年份:
    2006
  • 资助金额:
    $ 46.19万
  • 项目类别:
    Standard Grant
NeTS-NOSS: Tenet: An Architecture for Tiered Embedded Networks
NeTS-NOSS:宗旨:分层嵌入式网络架构
  • 批准号:
    0520235
  • 财政年份:
    2005
  • 资助金额:
    $ 46.19万
  • 项目类别:
    Continuing Grant

相似海外基金

CPS: Synergy: Collaborative Research: Towards Effective and Efficient Sensing-Motion Co-Design of Swarming Cyber-Physical Systems
CPS:协同:协作研究:实现集群网络物理系统的有效和高效的传感-运动协同设计
  • 批准号:
    1936599
  • 财政年份:
    2019
  • 资助金额:
    $ 46.19万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: DEUS: Distributed, Efficient, Ubiquitous and Secure Data Delivery Using Autonomous Underwater Vehicles
CPS:协同:协作研究:DEUS:使用自主水下航行器进行分布式、高效、无处不在和安全的数据传输
  • 批准号:
    1853257
  • 财政年份:
    2018
  • 资助金额:
    $ 46.19万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: TickTalk: Timing API for Federated Cyberphysical Systems
CPS:协同:协作研究:TickTalk:联合网络物理系统的计时 API
  • 批准号:
    1645578
  • 财政年份:
    2018
  • 资助金额:
    $ 46.19万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: TickTalk: Timing API for Federated Cyberphysical Systems
CPS:协同:协作研究:TickTalk:联合网络物理系统的计时 API
  • 批准号:
    1646235
  • 财政年份:
    2018
  • 资助金额:
    $ 46.19万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Control of Vehicular Traffic Flow via Low Density Autonomous Vehicles
CPS:协同:协作研究:通过低密度自动驾驶车辆控制车流
  • 批准号:
    1854321
  • 财政年份:
    2018
  • 资助金额:
    $ 46.19万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Synergy: Augmented reality for control of reservation-based intersections with mixed autonomous-non autonomous flows
CPS:中:协作研究:协同作用:用于控制具有混合自主-非自主流的基于预留的交叉口的增强现实
  • 批准号:
    1739964
  • 财政年份:
    2018
  • 资助金额:
    $ 46.19万
  • 项目类别:
    Continuing Grant
CPS: Synergy: Collaborative Research: Foundations of Secure Cyber-Physical Systems of Systems
CPS:协同:协作研究:安全网络物理系统的基础
  • 批准号:
    1901728
  • 财政年份:
    2018
  • 资助金额:
    $ 46.19万
  • 项目类别:
    Standard Grant
CPS: TTP Option: Synergy: Collaborative Research: An Executable Distributed Medical Best Practice Guidance (EMBG) System for End-to-End Emergency Care from Rural to Regional Center
CPS:TTP 选项:协同:协作研究:用于从农村到区域中心的端到端紧急护理的可执行分布式医疗最佳实践指导 (EMBG) 系统
  • 批准号:
    1842710
  • 财政年份:
    2018
  • 资助金额:
    $ 46.19万
  • 项目类别:
    Continuing Grant
CPS: Synergy: Collaborative Research: MRI Powered & Guided Tetherless Effectors for Localized Therapeutic Interventions
CPS:协同作用:协作研究:MRI 驱动
  • 批准号:
    1646566
  • 财政年份:
    2017
  • 资助金额:
    $ 46.19万
  • 项目类别:
    Standard Grant
Synergy: Collaborative: CPS-Security: End-to-End Security for the Internet of Things
协同:协作:CPS-安全:物联网的端到端安全
  • 批准号:
    1822332
  • 财政年份:
    2017
  • 资助金额:
    $ 46.19万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了