Modern Aspects of Multivariable Operator Theory and Matrix Analysis
多变量算子理论和矩阵分析的现代方面
基本信息
- 批准号:2000037
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Operator theory and matrix analysis are both fundamental areas of mathematics. In large part, they were originally developed to provide a theoretical basis for quantum mechanics and other physical phenomena. An increasing number of application areas have emerged as a result of breakthroughs in operator theory and matrix analysis, which testify to their underlying importance to science and engineering. The areas of application closest to the research in this project are control systems engineering, electrical engineering, signal processing, image processing, and quantum computation. The principal investigator will build on his past work to further develop the interplay between the subdisciplines of free function theory, operator completions, statistical signal processing, matrix inequalities, and optimization. To accomplish this goal the principal investigator will continue existing collaborations as well as develop new ones, and engage actively with both graduate students and undergraduate students in the emerging research. The principal investigator will continue to maintain an intellectual environment fostering student involvement and development, providing the students with the skills, experience, and confidence to successfully pursue a career in the mathematical sciences. Thus, the project will yield both new, impactful mathematical results, as well as highly trained mathematicians prepared to join the scientific and educational workforce crucial to this nation. Many questions in system and control theory, filter design, signal and image processing come down to function theoretic questions. The case of several variables is a highly active research area where the techniques of multivariable operator theory are highly effective. The specific themes of the current project include (i) Matrix completions, (ii) Moment problems, (iii) Free function theory, (iv) Realizations, (v) Determinantal representations, (vi) Numerical range and radius, and their generalizations, (vii) Hypergeometric functions, and (viii) Inverse eigenvalue problems. This combination of areas will lead to new avenues of research that are of interest to different research groups. All projects also have a computational component, allowing for the implementation of the results and the potential to be used by researchers in all areas of science and engineering. The principal investigator will continue running an Analysis Seminar at Drexel University featuring local and international researchers, as well as Drexel students. The principal investigator and his students will disseminate the results via conference presentations and publications in a variety of leading mathematical journals and preprint servers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Completing an Operator Matrix and the Free Joint Numerical Radius
完成算子矩阵和自由联合数值半径
- DOI:10.1007/s11785-022-01273-0
- 发表时间:2022
- 期刊:
- 影响因子:0.8
- 作者:Rosa, Kennett L.;Woerdeman, Hugo J.
- 通讯作者:Woerdeman, Hugo J.
Minimal Realizations and Determinantal Representations in the Indefinite Setting
不定环境中的最小实现和行列式表示
- DOI:10.1007/s00020-022-02697-1
- 发表时间:2022
- 期刊:
- 影响因子:0.8
- 作者:Jackson, Joshua D.;Woerdeman, Hugo J.
- 通讯作者:Woerdeman, Hugo J.
Upper bounds for positive semidefinite propagation time
正半定传播时间的上限
- DOI:10.1016/j.disc.2022.112967
- 发表时间:2022
- 期刊:
- 影响因子:0.8
- 作者:Hogben, Leslie;Hunnell, Mark;Liu, Kevin;Schuerger, Houston;Small, Ben;Zhang, Yaqi
- 通讯作者:Zhang, Yaqi
The autoregressive filter problem for multivariable degree one symmetric polynomials
多元一阶对称多项式的自回归滤波问题
- DOI:10.1007/s44146-023-00072-z
- 发表时间:2023
- 期刊:
- 影响因子:0.5
- 作者:Geronimo, Jeffrey S.;Woerdeman, Hugo J.;Wong, Chung Y.
- 通讯作者:Wong, Chung Y.
Isospectrality and matrices with concentric circular higher rank numerical ranges
同心圆高阶数值范围的同谱性和矩阵
- DOI:10.1016/j.laa.2021.08.025
- 发表时间:2021
- 期刊:
- 影响因子:1.1
- 作者:Poon, Edward;Woerdeman, Hugo J.
- 通讯作者:Woerdeman, Hugo J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hugo Woerdeman其他文献
Hugo Woerdeman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hugo Woerdeman', 18)}}的其他基金
Decompositions for multivariable Schur-class functions, Christoffel-Darboux type formulas, and related problems
多变量 Schur 类函数、Christoffel-Darboux 类型公式的分解以及相关问题
- 批准号:
0901628 - 财政年份:2009
- 资助金额:
$ 24.9万 - 项目类别:
Continuing Grant
Collaborative Research: Multivariable Moments and Factorization and Other Problems in Analysis
合作研究:多变量矩和因式分解及其他分析问题
- 批准号:
0500678 - 财政年份:2005
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
相似国自然基金
膜融合必需基因缺失的细胞在细胞膜融合方面的适应性进化机制
- 批准号:32300496
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新型微流控纳米电穿孔平台在工程化外泌体制备和原位分析方面的研究
- 批准号:22374048
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向内质网-线粒体互作的小分子荧光探针及其在药物评价方面的应用
- 批准号:22367022
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
智慧旅游时代基于方面级情感分析的个性化旅游行程推荐研究
- 批准号:72301100
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
液晶二维偏振光栅及其在光场调控与信息处理方面的应用研究
- 批准号:12374279
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
球面上のデザイン理論と方向統計学の融合
球形设计理论与方向统计的融合
- 批准号:
24K06871 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
表面異方性ナノ粒子の自己集合を利用した高効率熱輸送液体の設計
利用表面各向异性纳米颗粒自组装设计高效传热液体
- 批准号:
24K17216 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
「100場面会話」の発展による方言語用論の基盤形成
通过“100情景对话”的发展奠定方言语用学的基础
- 批准号:
23K21936 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
ICTによるフレイルの社会的側面への介入方略の構築:主観的Well-being向上を目指して
利用信息通信技术制定针对社会方面衰弱的干预策略:旨在改善主观幸福感
- 批准号:
24K05433 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CT画像から解析したX線の入射方向情報を援用した患者表面線量分布の決定アルゴリズム
使用从 CT 图像分析的 X 射线入射方向信息确定患者表面剂量分布的算法
- 批准号:
24K21135 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists