Decompositions for multivariable Schur-class functions, Christoffel-Darboux type formulas, and related problems
多变量 Schur 类函数、Christoffel-Darboux 类型公式的分解以及相关问题
基本信息
- 批准号:0901628
- 负责人:
- 金额:$ 47.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
WoerdemanThe proposal lies at the interface of multivariable complex analysis and multivariable operator theory. The setting of study is the operator-valued Schur class and its subclass, the Schur?Agler class. While the latter is more understood due to Agler?s seminal work, the multivariable Schur class remains largely unexplored. The proposed program is aimed to gain a novel insight into the structure of multivariable Schur-class functions and higher-dimensional analogs of the two-variable Christoffel?Darboux formula. The investigation is motivated by its ultimate goals which would be to describe the class of commuting tuples of contractions having unitary dilations, to obtain solvability criteria for the Nevanlinna?Pick interpolation problem in the multivariable Schur class, and to develop a theory of system realizations for this class of functions. Tools to be employed include the machinery of scattering systems (building momentum on PIs? recent work) and the technique of Schur complements of multivariable Toeplitz operators (with a parallel development of fast inversion/solver numerical algorithms for multivariable Toeplitz matrices). One of the themes in this program is a best approximation geometric problem, tied to an important special case of Paulsen?s conjecture on the best constant in the multivariable operator-valued linear von Neumann inequality.The project addresses several questions in the active area of multivariable interpolation and factorization problems. These questions are of current relevance to a variety of areas in science and engineering, which include, but are not limited to, system and control theory, filter design, signal and image processing, compressive sensing, and quantum computation. The main educational component of the project is the supervision of graduate students and the mentoring of undergraduates who will be supported by the Research Experiences for Undergraduates program.The results of the proposed research will be disseminated at severallevels: through publications and presentations at national and international professional meetings, some of which will also be attended by researchers from other fields, such as computer science, physics and engineering; via formal and informal educational activities, including the weekly Analysis seminar at Drexel University run by the PIs and attended by both faculty and students; via visit exchanges with colleagues from other institutions for collaboration purposes; via the PIs? web sites and preprint servers.
WoerdemanThe建议在于多变量复分析和多变量算子理论的接口。研究的背景是算子值Schur类及其子类,Schur?阿格勒班。而后者是更了解由于阿格勒?的开创性工作,多变量舒尔类仍然在很大程度上未被探索。该方案的目的是获得一个新的洞察结构的多变量舒尔类函数和高维模拟的两个变量Christoffel?达布公式调查的动机是它的最终目标,这将是描述类的交换元组的收缩有单一的膨胀,以获得可解性标准的Nevanlinna?选择多变量Schur类中的插值问题,并为此类函数开发系统实现理论。所采用的工具包括散射系统的机械(在PI上建立动量?最近的工作)和多变量Toeplitz算子的Schur补的技术(与多变量Toeplitz矩阵的快速反演/求解器数值算法的并行开发)。在这个程序的主题之一是一个最佳逼近几何问题,绑在一个重要的特殊情况保尔森?关于多变量算子值线性von Neumann不等式中最佳常数的猜想,该项目解决了多变量插值和因子分解问题中的几个问题。这些问题目前与科学和工程领域的各种领域相关,包括但不限于系统和控制理论,滤波器设计,信号和图像处理,压缩传感和量子计算。该项目的主要教育组成部分是研究生的监督和本科生的指导,他们将得到本科生研究经验计划的支持。拟议研究的结果将在几个层面上传播:通过出版物和在国家和国际专业会议上的发言,其中一些会议也将有来自其他领域的研究人员参加,如计算机科学,物理学和工程学;通过正式和非正式的教育活动,包括由PI在德雷克塞尔大学举办的每周分析研讨会,并由教师和学生参加;通过与其他机构的同事进行访问交流,以进行合作;通过PI?网站和预印本服务器。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hugo Woerdeman其他文献
Hugo Woerdeman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hugo Woerdeman', 18)}}的其他基金
Modern Aspects of Multivariable Operator Theory and Matrix Analysis
多变量算子理论和矩阵分析的现代方面
- 批准号:
2000037 - 财政年份:2020
- 资助金额:
$ 47.56万 - 项目类别:
Standard Grant
Collaborative Research: Multivariable Moments and Factorization and Other Problems in Analysis
合作研究:多变量矩和因式分解及其他分析问题
- 批准号:
0500678 - 财政年份:2005
- 资助金额:
$ 47.56万 - 项目类别:
Standard Grant
相似海外基金
Multivariable and Higher order extensions of discrete Painlev\'e equaitons
离散 Painlev 方程的多变量和高阶扩展
- 批准号:
23K03173 - 财政年份:2023
- 资助金额:
$ 47.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Les pratiques liées à l'utilisation et les effets des bolus de sédatifs chez les adultes ventilés mécaniquement dans les unités de soins intensifs
成人通气机械在强化治疗中的使用和效果
- 批准号:
472009 - 财政年份:2022
- 资助金额:
$ 47.56万 - 项目类别:
Fellowship Programs
Orthogonalization-based manipulated-variable ranking for identifying and addressing gain-conditioning problems in multivariable control systems
基于正交化的操纵变量排序,用于识别和解决多变量控制系统中的增益调节问题
- 批准号:
567501-2021 - 财政年份:2022
- 资助金额:
$ 47.56万 - 项目类别:
Alliance Grants
Advanced multivariable nonlinear control methodology for matrix converters
用于矩阵转换器的先进多变量非线性控制方法
- 批准号:
DP220103928 - 财政年份:2022
- 资助金额:
$ 47.56万 - 项目类别:
Discovery Projects
Health-care utilization, and the impact of social determinants of health, in women with and without inflammatory bowel disease from preconception to postpartum
患有或不患有炎症性肠病的女性从孕前到产后的医疗保健利用情况以及健康社会决定因素的影响
- 批准号:
473734 - 财政年份:2022
- 资助金额:
$ 47.56万 - 项目类别:
Fellowship Programs
Identifying responders to chemotherapy in invasive lobular carcinoma of the breast: development of a multivariable clinical prediction tool
确定乳腺癌浸润性小叶癌化疗的反应者:开发多变量临床预测工具
- 批准号:
10468944 - 财政年份:2021
- 资助金额:
$ 47.56万 - 项目类别:
Orthogonalization-based manipulated-variable ranking for identifying and addressing gain-conditioning problems in multivariable control systems
基于正交化的操纵变量排序,用于识别和解决多变量控制系统中的增益调节问题
- 批准号:
567501-2021 - 财政年份:2021
- 资助金额:
$ 47.56万 - 项目类别:
Alliance Grants
COLLABORATIVE RESEARCH: GCR: Characterization and Robust Multivariable Control of the Dynamics of Gas Exchange During Peritoneal Oxygenated Perfluorocarbon Perfusion
合作研究:GCR:腹膜全氟化碳灌注过程中气体交换动力学的表征和鲁棒多变量控制
- 批准号:
2121101 - 财政年份:2021
- 资助金额:
$ 47.56万 - 项目类别:
Continuing Grant
COLLABORATIVE RESEARCH: GCR: Characterization and Robust Multivariable Control of the Dynamics of Gas Exchange During Peritoneal Oxygenated Perfluorocarbon Perfusion
合作研究:GCR:腹膜全氟化碳灌注过程中气体交换动力学的表征和鲁棒多变量控制
- 批准号:
2227939 - 财政年份:2021
- 资助金额:
$ 47.56万 - 项目类别:
Continuing Grant














{{item.name}}会员




