Uniformization of Metric Spaces and Quasiconformal Removability
度量空间的均匀化和拟共形可去除性
基本信息
- 批准号:2000096
- 负责人:
- 金额:$ 9.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to develop methods and geometric tools for understanding the geometry of fractal spaces. Fractal spaces appear in description of many natural phenomena such as in lightning bolts, growth models of plants and crystals, snowflakes, coastlines, and river networks. The questions that the project plans to study have applications whenever storage of three-dimensional information (landscapes, faces, human brain surface) in a two-dimensional image is desired without loss of information. While in the case of "smooth" objects (objects that are not modeled using fractals) the corresponding mathematical theory is well understood, this is not the case for fractal objects, which require the development of new techniques. This project aims to develop mathematical theory for such fractal spaces. Another focus of this project is the study of removable fractal sets. Fractal sets appear sometimes as boundaries of otherwise "smooth" objects, and for many problems it is useful to know that these fractals are removable, in the sense that their presence can be ignored for some purposes. Removability of fractal sets has applications in mathematical problems that require "gluing" together two functions, or two dynamical systems, or two surfaces, and could result in the better understanding of dynamical systems in physics.This project consists of three parts, concerning the uniformization of Sierpinski carpets, the uniformization of two-dimensional metric surfaces, and the problem of removability of fractal sets for conformal maps. Continuing earlier work, the PI will study problems related to the uniformization of Sierpinski carpets by square Sierpinski carpets and the PI will study the regularity of the uniformizing map, which is already known to be quasisymmetric or discrete quasiconformal. The PI will also work in questions related to Hausdorff dimension distortion under the uniformizing map and in generalizations of this planar uniformization theory to abstract Sierpinski carpets. Another focus is the problem of uniformization of two-dimensional metric surfaces. In this direction, the PI will investigate possible generalizations of uniformization theorems for two-dimensional surfaces by Euclidean space and concentrate efforts on weakening the existing geometric assumptions. Finally, the PI will work on extending earlier results on the removability of fractal sets, by finding topological criteria for fractal sets (resembling the Sierpinski gasket or carpet) to be non-removable, studying the equivalence of Sobolev removability and conformal removability, and exploring the connections of removability to the problem of rigidity of circle domains.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是开发用于理解分形空间几何的方法和几何工具。分形空间出现在许多自然现象的描述中,例如闪电、植物和晶体的生长模型、雪花、海岸线和河流网络。该项目计划研究的问题适用于需要在二维图像中存储三维信息(风景、面孔、人脑表面)且不丢失信息的情况。虽然在“平滑”对象(不使用分形建模的对象)的情况下,相应的数学理论是很好理解的,但分形对象的情况并非如此,这需要开发新技术。该项目旨在开发此类分形空间的数学理论。该项目的另一个重点是可移动分形集的研究。分形集有时表现为“平滑”对象的边界,对于许多问题来说,知道这些分形是可移除的是有用的,因为出于某些目的可以忽略它们的存在。分形集的可移除性在需要将两个函数、两个动力系统或两个表面“粘合”在一起的数学问题中得到应用,并且可以更好地理解物理学中的动力系统。该项目由三个部分组成,涉及谢尔宾斯基地毯的均匀化、二维度量表面的均匀化以及共形地图的分形集的可移除性问题。继续早期的工作,PI 将研究与方形 Sierpinski 地毯均匀化 Sierpinski 地毯相关的问题,并且 PI 将研究均匀化图的规律性,已知该图是拟对称或离散拟共形的。 PI 还将研究与均匀化图下的豪斯多夫维度畸变相关的问题,以及将平面均匀化理论推广到抽象谢尔宾斯基地毯。另一个焦点是二维度量曲面的均匀化问题。在这个方向上,PI将研究欧几里德空间对二维表面均匀化定理的可能推广,并集中精力弱化现有的几何假设。最后,PI 将致力于扩展分形集可移除性的早期成果,通过寻找不可移除的分形集(类似于谢尔宾斯基垫片或地毯)的拓扑标准,研究 Sobolev 可移除性和共形可移除性的等效性,并探索可移除性与圆域刚性问题的联系。该奖项反映了 NSF 的法定使命 通过使用基金会的智力优点和更广泛的影响审查标准进行评估,并被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Falconer’s $(K, d)$ distance set conjecture can fail for strictly convex sets $K$ in $\mathbb R^d$
Falconer 的 $(K, d)$ 距离集猜想对于 $mathbb R^d$ 中的严格凸集 $K$ 可能会失败
- DOI:10.4171/rmi/1254
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Bishop, Christopher;Drillick, Hindy;Ntalampekos, Dimitrios
- 通讯作者:Ntalampekos, Dimitrios
Extension of boundary homeomorphisms to mappings of finite distortion
边界同胚到有限畸变映射的扩展
- DOI:10.1112/plms.12462
- 发表时间:2022
- 期刊:
- 影响因子:1.8
- 作者:Karafyllia, Christina;Ntalampekos, Dimitrios
- 通讯作者:Ntalampekos, Dimitrios
On the Hausdorff dimension of the residual set of a packing by smooth curves
光滑曲线堆积残差集的Hausdorff维数
- DOI:10.1112/jlms.12546
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Maio, Steven;Ntalampekos, Dimitrios
- 通讯作者:Ntalampekos, Dimitrios
Conformal uniformization of planar packings by disk packings
圆盘填料对平面填料的共形均匀化
- DOI:10.1016/j.aim.2023.109159
- 发表时间:2023
- 期刊:
- 影响因子:1.7
- 作者:Ntalampekos, Dimitrios
- 通讯作者:Ntalampekos, Dimitrios
Polyhedral approximation of metric surfaces and applications to uniformization
度量曲面的多面体近似及其在均匀化中的应用
- DOI:10.1215/00127094-2022-0061
- 发表时间:2023
- 期刊:
- 影响因子:2.5
- 作者:Ntalampekos, Dimitrios;Romney, Matthew
- 通讯作者:Romney, Matthew
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dimitrios Ntalampekos其他文献
Semi-hyperbolic rational maps and size of Fatou components
半双曲有理图和 Fatou 分量的大小
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Dimitrios Ntalampekos - 通讯作者:
Dimitrios Ntalampekos
Non-removability of the Sierpiński gasket
Sierpiński 垫圈的不可拆卸性
- DOI:
10.1007/s00222-018-00852-3 - 发表时间:
2019 - 期刊:
- 影响因子:3.1
- 作者:
Dimitrios Ntalampekos - 通讯作者:
Dimitrios Ntalampekos
On the inverse absolute continuity of quasiconformal mappings on hypersurfaces
超曲面上拟共形映射的逆绝对连续性
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:1.7
- 作者:
Dimitrios Ntalampekos;Matthew Romney - 通讯作者:
Matthew Romney
Correction to: Metric definition of quasiconformality and exceptional sets
- DOI:
10.1007/s00208-023-02757-w - 发表时间:
2023-11-08 - 期刊:
- 影响因子:1.400
- 作者:
Dimitrios Ntalampekos - 通讯作者:
Dimitrios Ntalampekos
Lipschitz-Volume Rigidity and Sobolev Coarea Inequality for Metric Surfaces
公制曲面的 Lipschitz 体积刚度和 Sobolev 面积不等式
- DOI:
10.1007/s12220-024-01577-x - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
D. Meier;Dimitrios Ntalampekos - 通讯作者:
Dimitrios Ntalampekos
Dimitrios Ntalampekos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dimitrios Ntalampekos', 18)}}的其他基金
Uniformization and Rigidity in Metric Surfaces and in the Complex Plane
公制曲面和复平面中的均匀化和刚度
- 批准号:
2246485 - 财政年份:2023
- 资助金额:
$ 9.55万 - 项目类别:
Standard Grant
相似海外基金
Statistical Models and Methods for Complex Data in Metric Spaces
度量空间中复杂数据的统计模型和方法
- 批准号:
2310450 - 财政年份:2023
- 资助金额:
$ 9.55万 - 项目类别:
Standard Grant
Some topics in Analysis and Probability in Metric Measure Spaces, Random Matrices, and Diffusions
度量测度空间、随机矩阵和扩散中的分析和概率中的一些主题
- 批准号:
2247117 - 财政年份:2023
- 资助金额:
$ 9.55万 - 项目类别:
Standard Grant
Geometric flows and analysis on metric spaces
几何流和度量空间分析
- 批准号:
2305397 - 财政年份:2023
- 资助金额:
$ 9.55万 - 项目类别:
Standard Grant
Modeling Complex Functional Data and Random Objects in Metric Spaces
在度量空间中对复杂函数数据和随机对象进行建模
- 批准号:
2311035 - 财政年份:2023
- 资助金额:
$ 9.55万 - 项目类别:
Continuing Grant
Uniformization of Surfaces and Mapping Problems in Metric Spaces
度量空间中曲面的均匀化和映射问题
- 批准号:
2246894 - 财政年份:2023
- 资助金额:
$ 9.55万 - 项目类别:
Standard Grant
Uniformization of Surfaces and Mapping Problems in Metric Spaces
度量空间中曲面的均匀化和映射问题
- 批准号:
2413156 - 财政年份:2023
- 资助金额:
$ 9.55万 - 项目类别:
Standard Grant
Geometry of metric measure spaces and pyramids
度量测量空间和金字塔的几何
- 批准号:
23K03104 - 财政年份:2023
- 资助金额:
$ 9.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantum Perspectives in Banach and Metric Spaces
Banach 和度量空间中的量子视角
- 批准号:
2247374 - 财政年份:2023
- 资助金额:
$ 9.55万 - 项目类别:
Standard Grant
Quasiconformal and Sobolev mappings on metric measure spaces
度量测度空间上的拟共形映射和 Sobolev 映射
- 批准号:
22K13947 - 财政年份:2022
- 资助金额:
$ 9.55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Analysis on metric measure spaces by optimal transport theory and Markov processes
最优输运理论和马尔可夫过程对度量测度空间的分析
- 批准号:
22H04942 - 财政年份:2022
- 资助金额:
$ 9.55万 - 项目类别:
Grant-in-Aid for Scientific Research (S)














{{item.name}}会员




