Quantum Perspectives in Banach and Metric Spaces

Banach 和度量空间中的量子视角

基本信息

项目摘要

In many situations of interest, one has a quantitative way of expressing how far apart two objects are. A basic example is physical distance between locations in space, and a modern one is to measure how similar two words are (which is how software autocorrects our typing). The mathematical notion used to encapsulate this idea is that of a metric space. Particularly interesting kinds of such spaces are those that arise from networks, that is, those for which the measure of distance between two nodes is given by the optimal choice of a path connecting them using the links in the network: there are no direct flights between Oklahoma City and Boston, so for travel purposes what matters is not the geographical distance between the two cities but rather how to get from one to the other using the available commercial flights. Such network-type spaces play an important role in Information Theory, the mathematical framework for communications where information is encoded in a string of 0’s and 1’s as in today’s computers. The project studies the shape of the corresponding quantum network-type spaces that arise from Quantum Information Theory, which models communication systems where information is now encoded in the state of a quantum-mechanical system. Better knowledge of the shape of these quantum spaces has implications for the understanding of the capabilities of the quantum processes that will be used by the quantum computers of the future. In addition, through outreach, mentoring of postdocs, and involvement in undergraduate research, the project will contribute to the growth and diversification of the body of students and researchers in STEM fields. The project will focus on geometric questions arising from various models of quantization. It is divided into three parts. The first is about quantum graphs and other quantum metric spaces, with an emphasis on quantum expanders and the further development of a theory of the large-scale geometry of quantum metric spaces. The second part proposes to use Quantum Information Theory tools to study the nonlinear geometry of noncommutative sequence and function spaces. The focus is to study noncommutative versions of several generalized Mazur maps of interest in Banach space geometry, Operator Algebra Theory, Geometric Group Theory, and Theoretical Computer Science, as well as interpolation properties of a new generalization of weighted noncommutative Lebesgue p spaces. The third part is focused on operator spaces, which are a type of quantum Banach spaces. The study of their nonlinear geometry is a timely subject. The project intends to adapt tools coming from the linear theory of tensor products to continue the development of a nonlinear geometric theory for operator spaces, and to study asymptotic tensor products for operator spaces (whose Banach space counterparts have in recent times found applications in Quantum Information Theory).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在许多感兴趣的情况下,人们有一种定量的方式来表达两个物体之间的距离。一个基本的例子是空间位置之间的物理距离,一个现代的例子是测量两个单词的相似程度(这是软件自动纠正我们打字的方式)。用来概括这一思想的数学概念是度量空间。特别有趣的一类空间是由网络产生的,也就是说,两个节点之间的距离度量是通过使用网络中的链接连接它们的路径的最佳选择来给出的:俄克拉荷马州和波士顿之间没有直达航班,因此,就旅游目的而言,重要的不是两个城市之间的地理距离,而是如何利用现有的商业航班从一个城市前往另一个城市。这种网络型空间在信息论中扮演着重要的角色,信息论是通信的数学框架,信息被编码在一串0和1中,就像今天的计算机一样。该项目研究了从量子信息理论中产生的相应量子网络类型空间的形状,该理论对通信系统进行了建模,其中信息现在以量子力学系统的状态进行编码。更好地了解这些量子空间的形状,对于理解未来量子计算机将使用的量子过程的能力具有重要意义。此外,通过外展,博士后辅导和参与本科生研究,该项目将有助于STEM领域学生和研究人员的增长和多样化。该项目将侧重于各种量化模型所产生的几何问题。全文分为三个部分。第一个是关于量子图和其他量子度量空间,重点是量子展开器和量子度量空间的大规模几何理论的进一步发展。第二部分提出用量子信息论的工具来研究非对易序列和函数空间的非线性几何。重点是研究Banach空间几何、算子代数理论、几何群论和理论计算机科学中感兴趣的几个广义Mazur映射的非交换版本,以及加权非交换Lebesgue p空间的新推广的插值性质。第三部分主要讨论算子空间,这是一种量子Banach空间。对它们的非线性几何的研究是一个及时的课题。该项目旨在调整来自张量积线性理论的工具,以继续发展算子空间的非线性几何理论,研究算子空间的渐近张量积(他的Banach空间同行最近在量子信息理论中找到了应用)该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Javier Chavez-Dominguez其他文献

Javier Chavez-Dominguez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Javier Chavez-Dominguez', 18)}}的其他基金

Banach Spaces with a Focus on Sobolev-Style Spaces, Frame Theory, and Quantum Graphs
Banach 空间,重点关注 Sobolev 式空间、框架理论和量子图
  • 批准号:
    1900985
  • 财政年份:
    2019
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Standard Grant
Nonlinear and noncommutative perspectives on Banach space theory
Banach 空间理论的非线性和非交换视角
  • 批准号:
    1400588
  • 财政年份:
    2014
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Standard Grant

相似海外基金

The syntax of nominal copular clauses: theoretical and empirical perspectives
名词系动词从句的语法:理论和实证视角
  • 批准号:
    AH/Y007492/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Research Grant
Attitudes towards sustainable plant-based diets in Japan: Business and consumer perspectives
日本对可持续植物性饮食的态度:企业和消费者的观点
  • 批准号:
    24K16414
  • 财政年份:
    2024
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Global Perspectives of the Short-term Association between Suicide and Nighttime Excess Heat during Tropical Nights
热带夜晚自杀与夜间酷热之间短期关联的全球视角
  • 批准号:
    24K10701
  • 财政年份:
    2024
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Reconceptualizing Well-being to Foster a Sustainable Society through Indigenous and Youth Perspectives from the Global South
从南半球原住民和青年的角度重新定义福祉,促进可持续发展的社会
  • 批准号:
    24K03155
  • 财政年份:
    2024
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Black British History: Local Perspectives
英国黑人历史:当地视角
  • 批准号:
    AH/Y000765/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Research Grant
New perspectives towards Woodall's Conjecture and the Generalised Berge-Fulkerson Conjecture
伍德尔猜想和广义伯奇-富尔克森猜想的新视角
  • 批准号:
    EP/X030989/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Research Grant
The development and evaluation of a theatrical method to take others' perspectives: parent-child communication
换位思考的戏剧方法的发展与评价:亲子沟通
  • 批准号:
    23KJ2239
  • 财政年份:
    2024
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Reframing arrival: Transnational perspectives on perceptions, governance and practices - REFRAME.
重构到来:关于认知、治理和实践的跨国视角 - REFRAME。
  • 批准号:
    AH/Y00759X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Research Grant
CAREER: Low-Degree Polynomial Perspectives on Complexity
职业:复杂性的低次多项式视角
  • 批准号:
    2338091
  • 财政年份:
    2024
  • 资助金额:
    $ 16.21万
  • 项目类别:
    Continuing Grant
Healthcare provider perspectives on the role of healthbots in delivering care to patients taking varenicline for smoking cessation
医疗保健提供者对健康机器人在为服用伐尼克兰戒烟的患者提供护理方面的作用的看法
  • 批准号:
    492844
  • 财政年份:
    2023
  • 资助金额:
    $ 16.21万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了