Catalyst Project: Computer algorithms and simulations for CT image reconstruction and segmentation utilizing optimal sampling lattices and efficient domains
Catalyst 项目:利用最佳采样点阵和有效域进行 CT 图像重建和分割的计算机算法和模拟
基本信息
- 批准号:2000158
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-15 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Catalyst Projects provide support for Historically Black Colleges and Universities to work towards establishing research capacity of faculty to strengthen science, technology, engineering and mathematics undergraduate education and research. It is expected that the award will further the faculty member's research capability, improve research and teaching at the institution, and involve undergraduate students in research experiences. This project at Vorhees College seeks to develop computed tomography (CT) image reconstruction and segmentation methods using optimal sampling lattices and provides an opportunity for undergraduate students to enhance their education through research experiences in computer modeling. The researcher has established a strong collaboration with faculty at the University of South Carolina. Computed tomography is an important tool to create the internal image of a physical body. Image reconstruction is to compute the internal image from the scanned data and image segmentation may help to locate the internal objects or their boundaries in the image. The usual CT computations are done on a Cartesian lattice whose pixels are squares or cubes. However optimal sampling lattices, such as 2D hexagonal and 3D face centered cubic and body centered cubic lattices, provide more efficient sampling and better adjacency relation than the traditional Cartesian lattices. In this project, for the 2D case, images will be reconstructed from scanned data using the filtered back-projection method over a hexagonal lattice and in a regular hexagonal region. Then image segmentation methods such as graph-cuts on the reconstructed images are applied. Because a CT machine rotates to perform scans from different directions, a 2D object to be scanned may be assumed to be circular. Since the circular region can be embedded into a regular hexagon more tightly than into a square, fewer number of lattice points may be involved and the lattice points can be efficiently indexed for image segmentation. Hence the computational time for image segmentation may be reduced and the quality may be improved. Computer simulations will be done to evaluate the new algorithms in terms of image segmentation quality and computational efficiency.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
催化剂项目为历史上的黑人学院和大学提供支持,努力建立教师的研究能力,以加强科学,技术,工程和数学本科教育和研究。预计该奖项将进一步提高教师的研究能力,改善研究和教学机构,并参与本科生的研究经验。在Vorhees学院的这个项目旨在开发计算机断层扫描(CT)图像重建和分割方法,使用最佳采样网格,并为本科生提供了一个机会,通过计算机建模的研究经验,以提高他们的教育。研究人员与南卡罗来纳州大学的教师建立了密切的合作关系。计算机断层扫描是一种重要的工具,以创建一个物理身体的内部图像。图像重建是从扫描数据计算内部图像,图像分割可以帮助定位图像中的内部对象或其边界。通常的CT计算是在笛卡尔网格上进行的,其像素是正方形或立方体。然而,最佳采样格,如二维六边形和三维面心立方和体心立方格,提供了更有效的采样和更好的邻接关系比传统的笛卡尔格。在这个项目中,对于2D的情况下,图像将被重建从扫描数据使用过滤反投影方法在一个六边形晶格和一个规则的六边形区域。然后,图像分割方法,如图切割的重建图像上应用。因为CT机旋转以从不同方向执行扫描,所以可以假设要扫描的2D对象是圆形的。由于圆形区域可以比正方形更紧密地嵌入到正六边形中,因此可以涉及更少数量的格点,并且可以有效地索引格点以用于图像分割。因此,可以减少用于图像分割的计算时间并且可以提高质量。计算机模拟将在图像分割质量和计算效率方面对新算法进行评估。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Some efficient algorithms for morphological operations on hexagonal lattices and regular hexagonal domains
六方格子和正六方域形态学运算的一些有效算法
- DOI:10.1117/12.2579531
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Zheng, Xiqiang
- 通讯作者:Zheng, Xiqiang
Computer simulations for the denoising effect of morphological reconstructions for CT images on hexagonal grids and regular hexagonal regions
六边形网格和正六边形区域CT图像形态重建去噪效果的计算机模拟
- DOI:10.1117/12.2611798
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Zheng, Xiqiang
- 通讯作者:Zheng, Xiqiang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiqiang Zheng其他文献
Segmentation for Images of a Single Stem Cell Using Morphological Operations and Statistical Region Merging
- DOI:
10.1109/icsip57908.2023.10270995 - 发表时间:
2023-07 - 期刊:
- 影响因子:0
- 作者:
Xiqiang Zheng - 通讯作者:
Xiqiang Zheng
Life history traits of low-toxicity alternative bisphenol S on emDaphnia magna/em with short breeding cycles: A multigenerational study
低毒性替代双酚 S 对具有短繁殖周期的大型溞的生活史特征的影响:一项多代研究
- DOI:
10.1016/j.ecoenv.2023.114682 - 发表时间:
2023-03-15 - 期刊:
- 影响因子:6.100
- 作者:
Yixuan Zhang;Jianchao Liu;Chenyang Jing;Guanghua Lu;Runren Jiang;Xiqiang Zheng;Chao He;Wenliang Ji - 通讯作者:
Wenliang Ji
Fast Fourier Transform on FCC and BCC Lattices with Outputs on FCC and BCC Lattices Respectively
FCC 和 BCC 格子上的快速傅里叶变换,分别在 FCC 和 BCC 格子上输出
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:2
- 作者:
Xiqiang Zheng;Feng Gu - 通讯作者:
Feng Gu
Toxic interactions between microplastics and the antifungal agent ketoconazole in sediments on emLimnodrilus hoffmeistteri/em
微塑料与抗真菌剂酮康唑在水丝蚓沉积物中的毒性相互作用
- DOI:
10.1016/j.psep.2023.02.031 - 发表时间:
2023-04-01 - 期刊:
- 影响因子:7.800
- 作者:
Guanghua Lu;Qi Xue;Xin Ling;Xiqiang Zheng - 通讯作者:
Xiqiang Zheng
BOX-COUNTING DIMENSION RELATED TO THE BOUNDARY OF HEXAGONAL ARRAYS FOR AN EFFICIENT DIGITAL EARTH MODEL
高效数字地球模型中与六边形阵列边界相关的盒数维数
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Xiqiang Zheng - 通讯作者:
Xiqiang Zheng
Xiqiang Zheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
HSI Implementation and Evaluation Project: Increasing Computer Science Undergraduate Retention through Predictive Modeling and Early, Personalized Academic Interventions
HSI 实施和评估项目:通过预测建模和早期个性化学术干预提高计算机科学本科生的保留率
- 批准号:
2345378 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Targeted Infusion Project: Infusing deep learning into the undergraduate computer science and engineering curricula
有针对性的注入项目:将深度学习注入本科计算机科学与工程课程
- 批准号:
2306141 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
HSI Implementation and Evaluation Project: Enhancing and Expanding Second-Year Experience to Improve Equity, Retention and Student Success in Engineering/Computer Science Programs
HSI 实施和评估项目:增强和扩展第二年经验,以提高工程/计算机科学项目的公平性、保留率和学生成功
- 批准号:
2247579 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Targeted Infusion Project: Infusing Data Science into the Computer Science Undergraduate Curriculum
有针对性的注入项目:将数据科学注入计算机科学本科课程
- 批准号:
2205537 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Targeted Infusion Project: Infusing 5G and IoT Learning and Practice into Electrical and Computer Engineering Curriculum
有针对性的注入项目:将5G和物联网学习和实践融入电气和计算机工程课程
- 批准号:
2205891 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Targeted Infusion Project: Advancing Basic Science Research and Undergraduate Education in Computer Vision
定向输注项目:推进计算机视觉基础科学研究和本科教育
- 批准号:
2205578 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
HSI Implementation and Evaluation Project: Self-sustaining Peer Mentor Support System for Computer Science Students
HSI 实施和评估项目:计算机科学专业学生自我维持的同伴导师支持系统
- 批准号:
2150323 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
HSI Pilot Project: Fostering Hispanic Achievement in Computer Science and Engineering with Affinity Research Group Model (Project Achieve)
HSI 试点项目:通过亲和力研究小组模式促进西班牙裔计算机科学与工程成就(项目成果)
- 批准号:
2150048 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Targeted Infusion Project: Strengthening Undergraduate STEM Programs at Central State University through Computational Content and A Computer-Assisted Personalized Approach
有针对性的注入项目:通过计算内容和计算机辅助个性化方法加强中央州立大学本科 STEM 项目
- 批准号:
2107320 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Mentorship and Project-Based Learning to Support Computational Thinking and Computer Science Education Pathways for Underrepresented Students in Los Angeles
指导和基于项目的学习,为洛杉矶代表性不足的学生提供计算思维和计算机科学教育途径
- 批准号:
2122922 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant