Using Neural Networks for Automated Classification of Elementary Mathematics Instructional Activities
使用神经网络对基础数学教学活动进行自动分类
基本信息
- 批准号:2000487
- 负责人:
- 金额:$ 150万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project is supported by the EHR Core Research (ECR) program, which supports work that advances fundamental research on STEM learning and learning environments, broadening participation in STEM, and STEM workforce development.In the last decade, there has been a tremendous increase in the use of video for preparing teachers and studying teaching quality. Prominent approaches to summative evaluation of teaching candidates and beginning teachers feature video recordings of instructional practices. In addition, large-scale research studies have included video of instruction. Teacher preparation programs increasingly use video in methods courses and for formative assessment purposes. Moreover, the growing use of interactive simulation in pre-service preparation and in-service professional development relies on having video recorded examples of exemplary instructional practices. Despite the significant growth in the use of video to measure and promote instructional quality in recent years, there remain some key challenges to employing it at scale. First, it is very time-consuming for trained human raters to view hundreds of hours of video recorded lessons. Second, financial costs and time demands increase with the use of multiple human raters per video. Third, manually cataloging, labeling, and indexing large volumes of classroom video for later viewing is time consuming. Recent advances in computer vision, machine learning, and deep learning may provide solutions to these challenges and could make the process of analyzing and scoring videos more efficient. In particular, deep learning has become the state-of-the-art choice in problems related to analyzing the content of video. This proposed NSF Core Research study will draw on videos of elementary mathematics instruction that were collected for two NSF-funded studies that featured the Mathematics-Scan (M-Scan) classroom observation tool. The research will use these videos to explore several ways that deep neural networks can be used to classify instructional activities in videos of math instruction.This study will advance knowledge and understanding by examining the degree to which three types of artificial neural networks can accurately classify (a) objects and (b) instructional activities in videos of elementary mathematics instruction. For example, it may be straightforward for neural networks to determine whether an elementary teacher is engaged in lecture vs. facilitating discussion with students. On the other hand, it may be harder for such networks to assess the ways teachers represent math content, the nature of their questions, and whether student gestures signify understanding. The research design concerns three aspects of using computer vision, machine learning, and deep learning: (a) the type of neural network, (b) the type of video label (i.e., object labels and instructional activity labels), and (c) the subject of math instruction (e.g., number and operations; patterns, functions, and algebra; geometry). A few types of neural networks have recently proven effective for video classification: convolutional neural networks (CNNs), long short-term memory (LSTM) neural networks, and hybrid CNN-LSTMs. Ultimately, this project is aimed at beginning to build systematic infrastructure for classifying videos of classroom instruction at scale in efficient and affordable ways. The findings will potentially have key implications for (a) large-scale research studies that feature videos of instruction and (b) pre-service teacher preparation programs, in-service professional development activities, and efforts to evaluate teaching candidates and practicing teachers. In particular, the results from this study will inform decisions about the types of neural networks that can be used to correctly classify videos of instruction and the practical limitations of using networks for this purpose.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目由EHR核心研究(ECR)计划提供支持,该计划支持推进STEM学习和学习环境的基础研究,扩大STEM的参与度,以及STEM劳动力发展。在过去的十年中,使用视频进行教师准备和研究教学质量的情况大幅增加。对教学候选人和初任教师进行总结性评价的突出方法是对教学实践进行录像。此外,大规模的研究还包括教学录像。教师准备项目越来越多地在方法课程和形成性评估中使用视频。此外,越来越多地使用交互式模拟在职前准备和在职专业发展依赖于具有视频记录的示例性教学实践。尽管近年来使用视频来衡量和促进教学质量的显着增长,但大规模使用视频仍然存在一些关键挑战。首先,经过培训的人工评分员观看数百小时的视频记录课程非常耗时。其次,每个视频使用多个人工评分员会增加财务成本和时间需求。第三,手动编目、标记和索引大量课堂视频以供以后观看是耗时的。计算机视觉、机器学习和深度学习的最新进展可能为这些挑战提供解决方案,并使分析和评分视频的过程更加高效。特别是,深度学习已经成为与分析视频内容相关的问题的最新选择。这项拟议的NSF核心研究将利用为两项NSF资助的研究收集的小学数学教学视频,这些研究采用了数学扫描(M-Scan)课堂观察工具。本研究将使用这些视频探索深度神经网络可以用于对数学教学视频中的教学活动进行分类的几种方法。本研究将通过检查三种类型的人工神经网络对小学数学教学视频中的(a)对象和(B)教学活动进行准确分类的程度来推进知识和理解。例如,神经网络可以直接确定小学教师是否参与讲座与促进与学生的讨论。另一方面,这样的网络可能更难评估教师代表数学内容的方式,他们的问题的性质,以及学生的手势是否意味着理解。研究设计涉及使用计算机视觉、机器学习和深度学习的三个方面:(a)神经网络的类型,(B)视频标签的类型(即,对象标签和教学活动标签),以及(c)数学教学的主题(例如,数与运算;模式、函数与代数;几何)。一些类型的神经网络最近被证明对视频分类有效:卷积神经网络(CNN),长短期记忆(LSTM)神经网络和混合CNN-LSTM。最终,该项目旨在开始建立系统的基础设施,以有效和负担得起的方式对课堂教学视频进行分类。研究结果将可能有关键的影响(a)大规模的研究,教学视频和(B)职前教师准备计划,在职专业发展活动,并努力评估教学候选人和执业教师。特别是,这项研究的结果将为有关可用于正确分类教学视频的神经网络类型以及为此目的使用网络的实际限制的决策提供信息。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
TAA-GCN: A temporally aware Adaptive Graph Convolutional Network for age estimation
- DOI:10.1016/j.patcog.2022.109066
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:Matthew Korban;Peter Youngs;S. Acton
- 通讯作者:Matthew Korban;Peter Youngs;S. Acton
A Multi-Modal Transformer Network for Action Detection
- DOI:10.1016/j.patcog.2023.109713
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Matthew Korban;S. Acton;Peter Youngs
- 通讯作者:Matthew Korban;S. Acton;Peter Youngs
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Youngs其他文献
Die Art der Ausbildung von Lehrern und die Lerngewinne ihrer Schüler. Eine Übersicht über aktuelle empirische Forschung
学习的艺术和舒勒的学习。
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Andrew J. Wayne;Peter Youngs - 通讯作者:
Peter Youngs
Motivating Leadership Change and Improvement: How Principal Evaluation Addresses Intrinsic and Extrinsic Sources of Motivation
激励领导力变革和改进:校长评估如何解决内在和外在的激励来源
- DOI:
10.1177/0013161x231188706 - 发表时间:
2023 - 期刊:
- 影响因子:3.3
- 作者:
Madeline Mavrogordato;Peter Youngs;Morgaen L. Donaldson;Hana Kang;Shaun M. Dougherty - 通讯作者:
Shaun M. Dougherty
The development of ambitious instruction: How beginning elementary teachers’ preparation experiences are associated with their mathematics and English language arts instructional practices
- DOI:
10.1016/j.tate.2021.103576 - 发表时间:
2022-02-01 - 期刊:
- 影响因子:
- 作者:
Peter Youngs;Lauren Molloy Elreda;Dorothea Anagnostopoulos;Julie Cohen;Corey Drake;Spyros Konstantopoulos - 通讯作者:
Spyros Konstantopoulos
Processing of Precursor Interleukin 18 and Inflammatory Disease *
前体白细胞介素 18 的加工与炎症疾病 *
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
D. Hazuda;James Stricklerll;Friedrich Kueppersll;P. Simon;Peter Youngs - 通讯作者:
Peter Youngs
Automatic classification of activities in classroom videos
课堂视频中的活动自动分类
- DOI:
10.1016/j.caeai.2024.100207 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jonathan K. Foster;Matthew Korban;Peter Youngs;Ginger S. Watson;Scott T. Acton - 通讯作者:
Scott T. Acton
Peter Youngs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Youngs', 18)}}的其他基金
A Study of Elements of Teacher Preparation Programs that Interact with Candidates' Characteristics to Support Novice Elementary Teachers to Enact Ambitious Mathematics Instruction
与候选人特征相互作用的教师准备计划要素的研究,以支持小学新手教师进行雄心勃勃的数学教学
- 批准号:
1535024 - 财政年份:2015
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
相似国自然基金
Neural Process模型的多样化高保真技术研究
- 批准号:62306326
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
RII Track-4:@NASA: Automating Character Extraction for Taxonomic Species Descriptions Using Neural Networks, Transformer, and Computer Vision Signal Processing Architectures
RII Track-4:@NASA:使用神经网络、变压器和计算机视觉信号处理架构自动提取分类物种描述的字符
- 批准号:
2327168 - 财政年份:2024
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
Inferring the evolution of functional connectivity over learning in large-scale neural recordings using low-tensor-rank recurrent neural networks
使用低张量秩递归神经网络推断大规模神经记录中功能连接学习的演变
- 批准号:
BB/Y513957/1 - 财政年份:2024
- 资助金额:
$ 150万 - 项目类别:
Research Grant
A New Tsunami Model Using Physics-Informed Neural Networks (PINNs) for Real-Time Tsunami Simulation
使用物理信息神经网络 (PINN) 进行实时海啸模拟的新海啸模型
- 批准号:
24K08013 - 财政年份:2024
- 资助金额:
$ 150万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Learning to Explain. Using Verification Techniques to Explain Neural Networks
学习解释。
- 批准号:
2872621 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别:
Studentship
Object Recognition by using Deep Neural Networks for Graph Stractured Descriptions of Image Features and Aspect Views
使用深度神经网络进行图像特征和方面视图的图结构化描述的对象识别
- 批准号:
23K11175 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
LEAPS-MPS: Deep Learning Phonons using Graph Neural Networks
LEAPS-MPS:使用图神经网络深度学习声子
- 批准号:
2317008 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
Tackling real-world time series using dynamic neural networks
使用动态神经网络处理现实世界的时间序列
- 批准号:
23K16949 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
SCC-CIVIC-FA Track A: Targeted Micro-retrofits based on Building Envelope Scans using Drones, GPR, and Deep Neural Networks
SCC-CIVIC-FA 轨道 A:基于使用无人机、探地雷达和深度神经网络进行建筑包络扫描的有针对性的微改造
- 批准号:
2322242 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
Development of language-related neural networks using multimodal imaging
使用多模态成像开发语言相关神经网络
- 批准号:
2323360 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
Collaborative Research: A Unifying Deep Learning Framework Using Cell Complex Neural Networks
协作研究:使用细胞复杂神经网络的统一深度学习框架
- 批准号:
2323062 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别:
Standard Grant














{{item.name}}会员




