RII Track-4:@NASA: Automating Character Extraction for Taxonomic Species Descriptions Using Neural Networks, Transformer, and Computer Vision Signal Processing Architectures

RII Track-4:@NASA:使用神经网络、变压器和计算机视觉信号处理架构自动提取分类物种描述的字符

基本信息

  • 批准号:
    2327168
  • 负责人:
  • 金额:
    $ 18.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-15 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

This project would provide a fellowship to an Associate professor and training for a graduate student at the University of Puerto Rico Mayaguez. Arthropoda, a group that includes insects, spiders, and millipedes, is Earth's most diverse phylum with over 1.01 million known species. With an estimated 7 million species yet to be discovered, and a discovery rate of just 7,000 species per year, it would take around 850 years to identify them all, a process currently taking an average of 21 years per species. This project aims to expedite this through "Descriptron", a groundbreaking artificial intelligence tool leveraging machine learning and computer vision to accelerate species descriptions and taxonomic key generation. In collaboration with NASA Marshall Space Flight Center, the project will utilize advanced imaging technology to automate the capture and description of arthropod morphological features, reducing human error and ensuring reproducible results. The implications extend across ecology, evolutionary biology, and developmental biology. Emphasizing the role of citizen science, the project involves the wider community in data annotation via iNaturalist, fostering public participation in scientific discovery. This endeavor advances our understanding of biodiversity in our own backyards and accelerates the identification of undiscovered life on Earth.Panarthropoda, encompassing Onychophora, Tardigrada, Chelicerata, Myriapoda, and Pancrustacea, is Earth's largest and most diverse clade, with an estimated 7 million species yet to be discovered. Through "Descriptron", an artificial intelligence (AI) pipeline, this project will significantly accelerate taxonomic species descriptions and key generation through the utilization of state-of-the-art transformers, convolutional neural networks, and computer vision techniques. Key to this endeavor is a strategic collaboration with NASA's Marshall Space Flight Center, providing advanced imaging technology for Descriptron's development. Advanced imaging techniques will greatly speed up the development of novel training data needed for the automation of instance segmentation and text description process of arthropod morphological features, reducing human error and ensuring highly reproducible, objective results. By creating a library of models for sclerites and descriptive terms including color, texture, and shape, Descriptron will automate the process of producing a skeletonized taxonomic species description. This project leverages citizen science by engaging the broader community in the data annotation process via the iNaturalist platform. This approach not only facilitates public understanding and appreciation of biodiversity but also contributes essential data to the project. The use of Descriptron promises wide-reaching impacts across various fields such as ecology, evolutionary biology, and developmental biology that depend upon accurate morphological data. By effectively involving citizen scientists and accelerating taxonomic discovery, this project holds substantial potential to advance our understanding of Earth's biodiversity and expedite the biodiscovery process.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将为波多黎各马亚圭斯大学的一名副教授提供研究金,并为一名研究生提供培训。 节肢动物,包括昆虫,蜘蛛和千足虫,是地球上最多样化的门,已知物种超过101万种。估计有700万个物种尚未被发现,而每年的发现率仅为7,000个物种,需要大约850年才能识别所有物种,目前每个物种平均需要21年。该项目旨在通过“Descriptron”加速这一过程,这是一种开创性的人工智能工具,利用机器学习和计算机视觉来加速物种描述和分类关键字生成。 该项目将与美国宇航局马歇尔太空飞行中心合作,利用先进的成像技术自动捕获和描述节肢动物形态特征,减少人为错误并确保可重复的结果。其影响涵盖生态学、进化生物学和发育生物学。 该项目强调公民科学的作用,通过iNaturalist让更广泛的社区参与数据注释,促进公众参与科学发现。全节肢动物门(Panarthropoda)是地球上最大、最具多样性的分支,约有700万个物种尚未被发现。全节肢动物门(Panarthropoda)包括爪亚目(Onychophora)、缓步动物门(Tardigrada)、螯肢动物门(Chelicerata)、多足动物门(Myriapoda)和全甲壳动物门(Pancrustacea)。通过人工智能(AI)管道“Descriptron”,该项目将通过利用最先进的变压器,卷积神经网络和计算机视觉技术,显着加快分类物种描述和密钥生成。这一奋进的关键是与美国宇航局的马歇尔太空飞行中心的战略合作,为Descriptron的发展提供先进的成像技术。先进的成像技术将大大加快节肢动物形态特征的实例分割和文本描述过程自动化所需的新型训练数据的开发,减少人为错误并确保高度可重复的客观结果。通过创建一个用于骨片和描述性术语(包括颜色、纹理和形状)的模型库,Descriptron将自动化产生分类学物种描述的过程。 该项目通过iNaturalist平台让更广泛的社区参与数据注释过程,从而利用公民科学。这种方法不仅有助于公众了解和欣赏生物多样性,而且还为项目提供了必要的数据。描述子的使用有望在生态学、进化生物学和发育生物学等依赖于准确形态学数据的各个领域产生广泛影响。通过有效地让公民科学家参与并加速分类学发现,该项目具有极大的潜力,可以促进我们对地球生物多样性的理解,加快生物发现进程。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alex Van Dam其他文献

Volume of Aneurysmal Subarachnoid Hemorrhage and Cognitive Outcomes
  • DOI:
    10.1007/s12028-025-02326-w
  • 发表时间:
    2025-07-16
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Elena Sagues;Navami Shenoy;Alex Van Dam;Lidia Diaz;Andres Gudino;Carlos Dier;Domenica Cifuentes;Ruben Calle;Linder Wendt;Kathleen Dlouhy;Mario Zanaty;Santiago Ortega-Gutierrez;Natalia Garcia-Casares;Edgar A. Samaniego
  • 通讯作者:
    Edgar A. Samaniego

Alex Van Dam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alex Van Dam', 18)}}的其他基金

NSF Postdoctoral Fellowship in Biology FY 2013
2013 财年 NSF 生物学博士后奖学金
  • 批准号:
    1306489
  • 财政年份:
    2013
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Fellowship Award

相似海外基金

RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
  • 批准号:
    2327025
  • 财政年份:
    2024
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
  • 批准号:
    2327206
  • 财政年份:
    2024
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
  • 批准号:
    2327232
  • 财政年份:
    2024
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
  • 批准号:
    2327267
  • 财政年份:
    2024
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: In-Situ/Operando Characterizations of Single Atom Catalysts for Clean Fuel Generation
RII Track-4:NSF:用于清洁燃料生成的单原子催化剂的原位/操作表征
  • 批准号:
    2327349
  • 财政年份:
    2024
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
  • 批准号:
    2327317
  • 财政年份:
    2024
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Standard Grant
RII Track-4:@NASA: Wind-induced noise in the prospective seismic data measured in the Venusian surface environment
RII Track-4:@NASA:金星表面环境中测量的预期地震数据中的风致噪声
  • 批准号:
    2327422
  • 财政年份:
    2024
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
  • 批准号:
    2327435
  • 财政年份:
    2024
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
  • 批准号:
    2327466
  • 财政年份:
    2024
  • 资助金额:
    $ 18.81万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了