Beyond Hyperbolicity at the Ohio State University

俄亥俄州立大学的超越双曲性

基本信息

  • 批准号:
    2000885
  • 负责人:
  • 金额:
    $ 3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

This award supports participation in the Beyond Hyperbolicity Conference at the Ohio State University, which will be held July 6-10, 2020. The theme of the conference is in geometric group theory, a field that uses algebraic techniques to understand complicated geometric spaces. The Ohio State University has long been a hub for research in geometric group theory, and this conference will continue in this tradition.Although hyperbolic groups and spaces are a common topic at geometric group theory conferences, the goal of this conference is to highlight work being done in other areas of combinatorial and geometric group theory. Whereas there have are many conferences focused on hyperbolic and acylindrically hyperbolic groups, mapping class groups, and cubical groups, there have been relatively few conferences devoted to a variety of other groups relevant to geometric group theory such as nilpotent and solvable groups, amenable groups, Thompson’s groups, groups of dynamical origins, self-similar groups, and more. These other categories of groups have a long history in the study of geometric group theory. The focus of this conference is to bring together researchers who specialize in these topics to encourage fruitful discussions regarding open questions in geometric group theory outside of the realm of hyperbolic groups. The conference website is at https://sites.google.com/view/beyondhyperbolicity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持参加将于2020年7月6日至10日在俄亥俄州立大学举行的超越双曲性会议。会议的主题是几何群论,这是一个使用代数技术来理解复杂几何空间的领域。俄亥俄州立大学长期以来一直是几何群论研究的中心,这次会议将继续这一传统。虽然双曲群和空间是几何群论会议的共同话题,但这次会议的目的是突出在组合和几何群论的其他领域所做的工作。虽然有许多会议集中在双曲群和非线性双曲群,映射类群和立体群,但相对较少的会议致力于各种其他与几何群论有关的群,如幂零和可解群,服从群,汤普森群,动力起源群,自相似群,等等。这些其他类型的群在几何群论的研究中有着悠久的历史。这次会议的重点是聚集专门研究这些主题的研究人员,鼓励对双曲群之外的几何群论中的开放问题进行富有成效的讨论。会议网站位于https://sites.google.com/view/beyondhyperbolicity.This,该奖项反映了国家科学基金会的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rachel Skipper其他文献

GGS-groups acting on trees of growing degrees
GGS 基团作用于生长程度较高的树木
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rachel Skipper;Anitha Thillaisundaram
  • 通讯作者:
    Anitha Thillaisundaram
A constructive proof that the Hanoi towers group has non-trivial rigid kernel
河内塔群具有非平凡刚性核的建设性证明
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rachel Skipper
  • 通讯作者:
    Rachel Skipper
On the Cantor–Bendixson rank of the Grigorchuk group and the Gupta–Sidki 3 group
关于 Grigorchuk 群和 Gupta-Sidki 3 群的 Cantor-Bendixson 秩
  • DOI:
    10.1016/j.jalgebra.2020.02.034
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Rachel Skipper;Phillip R. Wesolek
  • 通讯作者:
    Phillip R. Wesolek
Almost-automorphisms of trees, cloning systems and finiteness properties
树的近自同构、克隆系统和有限性
The congruence subgroup problem for a family of branch groups
支群族的同余子群问题

Rachel Skipper的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rachel Skipper', 18)}}的其他基金

Group Actions on Trees and Boundaries of Trees
树木和树木边界的集体行动
  • 批准号:
    2343739
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Group Actions on Trees and Boundaries of Trees
树木和树木边界的集体行动
  • 批准号:
    2005297
  • 财政年份:
    2020
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant

相似海外基金

Higher rank hyperbolicity and homological isoperimetric inequalities
高阶双曲性和同调等周不等式
  • 批准号:
    2896389
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Studentship
Higher rank hyperbolicity and homological isoperimetric inequalities
高阶双曲性和同调等周不等式
  • 批准号:
    2785744
  • 财政年份:
    2023
  • 资助金额:
    $ 3万
  • 项目类别:
    Studentship
Hyperbolicity of Finitely Generated Groups
有限生成群的双曲性
  • 批准号:
    2742050
  • 财政年份:
    2022
  • 资助金额:
    $ 3万
  • 项目类别:
    Studentship
Algebraic Hyperbolicity and Lang Conjecture
代数双曲性和 Lang 猜想
  • 批准号:
    RGPIN-2019-04775
  • 财政年份:
    2022
  • 资助金额:
    $ 3万
  • 项目类别:
    Discovery Grants Program - Individual
Hyperbolicity with Singularities and Coexistence via Smoothing
双曲性与奇点以及通过平滑的共存
  • 批准号:
    2154378
  • 财政年份:
    2022
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Algebraic Hyperbolicity and Lang Conjecture
代数双曲性和 Lang 猜想
  • 批准号:
    RGPIN-2019-04775
  • 财政年份:
    2021
  • 资助金额:
    $ 3万
  • 项目类别:
    Discovery Grants Program - Individual
The Role of Gromov Hyperbolicity and Besov Spaces in Quasiconformal Analysis
格罗莫夫双曲性和贝索夫空间在拟共形分析中的作用
  • 批准号:
    2054960
  • 财政年份:
    2021
  • 资助金额:
    $ 3万
  • 项目类别:
    Standard Grant
Generalizations of hyperbolicity
双曲性的概括
  • 批准号:
    564135-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 3万
  • 项目类别:
    University Undergraduate Student Research Awards
Generalized hyperbolicity and the geometry of algebraic varieties
广义双曲性和代数簇的几何
  • 批准号:
    RGPIN-2016-05294
  • 财政年份:
    2021
  • 资助金额:
    $ 3万
  • 项目类别:
    Discovery Grants Program - Individual
Generalized hyperbolicity and the geometry of algebraic varieties
广义双曲性和代数簇的几何
  • 批准号:
    RGPIN-2016-05294
  • 财政年份:
    2020
  • 资助金额:
    $ 3万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了