Collaborative Research: Fluid Dynamics-based analysis towards control of sleep apnea
合作研究:基于流体动力学的睡眠呼吸暂停控制分析
基本信息
- 批准号:2001090
- 负责人:
- 金额:$ 8.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Dong, Haibo / XI, JinxiangProposal Number: 1605232 / 1605434The goal of the proposed research is to investigate the fluid dynamics mechanisms that can lead to sleep apnea and to develop fluid dynamics-based strategies for intervention. The importance of understanding the reasons for this condition at a fundamental level is very significant, since this condition that can sometimes result in deaths.The goal of the proposed research is to advance the fundamental knowledge of biological fluid dynamics in prediction and control of human snoring through a combined physiology-based modeling, physics-based simulation, analysis, verification, and optimization approach. This approach is also applicable to a wide range of engineering and biological systems, such as noise reduction and phonation. There are mainly two objectives: (1) to develop a methodology for unveiling the flow physics and sound-producing mechanism of biological fluid-structure coupling problems and (2) to use the methodology for the investigation of optimal intervention procedures in order to ease the vortex-induced snore symptoms towards a better quality of life. The proposed work is highly interdisciplinary and involves fundamental scientific problems in the fields of biology, physics, physiology, and engineering. Snoring is an audible sign coded with richness of information about human respiratory functions. The sound comes from a complex interaction between compliant airway structures and the transient vortex shedding which is induced by the narrowing of the airway passage. However, the specific snore source mechanisms are still elusive, despite the significant in vitro and clinical efforts. Physics-based numerical investigation of the snore source will promise to quantify the relationship between the nonlinear response of the flexible airways and the respiratory vortex dynamics for sound generation. Currently, snore source diagnosis relies on expensive and time-consuming procedures that are outsourced to special analytical laboratories. Such challenges in performing in vivo and in vitro snore diagnosis will make the numerical methods ideal investigative tools. The PIs propose to systematically study the snore-producing mechanisms of different age and gender groups, paying particular attention to the underlying physics of biological fluid-structure interaction and associated sound sources. This is to be accomplished through the use of a combined modeling, simulation, analysis, validation, and optimization approach. The findings from the proposed research could provide pre-surgical guidelines for alleviating the apnea-causing factors by minimizing sound production of the system. Findings from this work could be used by acoustic experts and respiratory therapists for understanding the sound source production and control from its biological origin. The theories developed from this research will promote accurate diagnosis of snore sources and effective treatment of patients with snoring or other respiratory disorders. The research work will also be the central theme in a multi-level education program in which: (1) PIs will continue to provide summer undergraduate research experience to attract and retain engineering students from under-represented groups; (2) the proposed methodology will be incorporated into the PIs' existing graduate level course on bio-inspired flow and respiratory aerosol dynamics; and (3) an educational lab curriculum in snore specialty will be developed to provide multi-disciplinary training and research opportunities for high-school and college students and to support biomedical and bio-inspired engineering programs in both University of Virginia and Central Michigan University
主要研究者:Dong,Haibo / XI,Jinxiang建议编号:1605232 /1605434建议研究的目标是调查可能导致睡眠呼吸暂停的流体动力学机制,并开发基于流体动力学的干预策略。在基本水平上理解这种情况的原因是非常重要的,因为这种情况下,有时会导致deaths.The拟议的研究的目标是推进生物流体动力学的基础知识在预测和控制人类打鼾,通过结合基于生理学的建模,基于物理学的仿真,分析,验证和优化方法。这种方法也适用于广泛的工程和生物系统,如降噪和发声。主要有两个目标:(1)开发一种方法来揭示生物流体-结构耦合问题的流动物理和声音产生机制,以及(2)使用该方法来研究最佳干预程序,以缓解涡流引起的打鼾症状,从而提高生活质量。拟议的工作是高度跨学科的,涉及生物学,物理学,生理学和工程学领域的基本科学问题。打鼾是一种听觉信号,编码有关于人类呼吸功能的丰富信息。声音来自于顺应性气道结构和由气道通道变窄引起的瞬态涡流脱落之间的复杂相互作用。然而,尽管在体外和临床上做出了重大努力,但具体的打鼾源机制仍然难以捉摸。打鼾源的基于物理的数值研究将有望量化柔性气道的非线性响应与用于声音生成的呼吸涡流动力学之间的关系。目前,打鼾源诊断依赖于昂贵且耗时的程序,这些程序被外包给特殊的分析实验室。在进行体内和体外打鼾诊断的这些挑战将使数值方法成为理想的研究工具。研究人员建议系统地研究不同年龄和性别群体的打鼾产生机制,特别关注生物流体-结构相互作用和相关声源的基本物理学。这是通过使用组合建模、模拟、分析、验证和优化方法来实现的。从拟议的研究结果可以提供术前指导方针,以减轻呼吸暂停引起的因素,最大限度地减少系统的声音产生。这项工作的结果可以用于声学专家和呼吸治疗师了解声源的产生和控制从其生物起源。本研究所建立的理论将促进打鼾源的准确诊断和打鼾或其他呼吸系统疾病患者的有效治疗。研究工作也将是一个多层次教育计划的中心主题,其中:(1)PI将继续提供暑期本科研究经验,以吸引和留住来自代表性不足群体的工程学生;(2)拟议的方法将纳入PI现有的生物启发流动和呼吸气溶胶动力学研究生课程;以及(3)将开发打鼾专业的教育实验室课程,为高中和大学生提供多学科培训和研究机会,并支持弗吉尼亚大学和中密歇根大学的生物医学和生物启发工程项目
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinxiang Xi其他文献
Swallowing hydrodynamics visualization and aspiration quantification in a patient-specific pharyngolaryngeal model with varying epiglottis inversions
- DOI:
10.1016/j.medntd.2024.100326 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Amr Seifelnasr;Chen Sun;Peng Ding;Xiuhua April Si;Jinxiang Xi - 通讯作者:
Jinxiang Xi
Count- and mass-based dosimetry of MDI spray droplets with polydisperse and monodisperse size distributions
基于计数和质量的多分散和单分散尺寸分布的定量吸入器喷雾液滴的剂量测定
- DOI:
10.1016/j.ijpharm.2022.121920 - 发表时间:
2022-07-25 - 期刊:
- 影响因子:5.200
- 作者:
Mohamed Talaat;Xiuhua Si;Xiaofei Liu;Jinxiang Xi - 通讯作者:
Jinxiang Xi
Data on hydrodynamic flow and aspiration mechanisms in a patient-specific pharyngolaryngeal model with variable epiglottis angles
- DOI:
10.1016/j.dib.2024.111204 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:
- 作者:
Amr Seifelnasr;Chen Sun;Peng Ding;Xiuhua April Si;Jinxiang Xi - 通讯作者:
Jinxiang Xi
Quantitative Investigation of Synthetic Mucus Effects on Spray Deposition in a 3D-Printed SLA Nasal Cavity Model
- DOI:
10.1007/s11095-025-03886-4 - 发表时间:
2025-06-25 - 期刊:
- 影响因子:4.300
- 作者:
Amr Seifelnasr;Xiuhua April Si;Jinxiang Xi - 通讯作者:
Jinxiang Xi
Liquid Dynamics in the Upper Respiratory–Digestive System with Contracting Pharynx Motions and Varying Epiglottis Angles
上呼吸消化系统中的液体动力学与收缩的咽部运动和变化的会厌角度
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Amr Seifelnasr;X. Si;Peng Ding;Jinxiang Xi - 通讯作者:
Jinxiang Xi
Jinxiang Xi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinxiang Xi', 18)}}的其他基金
Collaborative Research: Fluid Dynamics-based analysis towards control of sleep apnea
合作研究:基于流体动力学的睡眠呼吸暂停控制分析
- 批准号:
1745602 - 财政年份:2017
- 资助金额:
$ 8.92万 - 项目类别:
Standard Grant
Collaborative Research: Fluid Dynamics-based analysis towards control of sleep apnea
合作研究:基于流体动力学的睡眠呼吸暂停控制分析
- 批准号:
1605434 - 财政年份:2016
- 资助金额:
$ 8.92万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Accuracy-Preserving Robust Time-Stepping Methods for Fluid Problems
协作研究:流体问题的保持精度的鲁棒时间步进方法
- 批准号:
2309728 - 财政年份:2023
- 资助金额:
$ 8.92万 - 项目类别:
Standard Grant
Collaborative Research: Fluid infiltration of the continental crust during Laramide flat-slab subduction: a unique tectonic setting
合作研究:拉拉米德平板俯冲期间大陆地壳的流体渗透:独特的构造环境
- 批准号:
2318412 - 财政年份:2023
- 资助金额:
$ 8.92万 - 项目类别:
Standard Grant
Collaborative Research: Quantifying the thermal effects of fluid circulation in oceanic crust on temperatures in the southern Mexico subduction zone
合作研究:量化洋壳流体循环对墨西哥南部俯冲带温度的热效应
- 批准号:
2234705 - 财政年份:2023
- 资助金额:
$ 8.92万 - 项目类别:
Continuing Grant
Collaborative Research: Quantifying the thermal effects of fluid circulation in oceanic crust on temperatures in the southern Mexico subduction zone
合作研究:量化洋壳流体循环对墨西哥南部俯冲带温度的热效应
- 批准号:
2234706 - 财政年份:2023
- 资助金额:
$ 8.92万 - 项目类别:
Continuing Grant
Collaborative Research: Shock formation, shock development, and the propagation of singularities in fluid dynamics
合作研究:激波形成、激波发展以及流体动力学中奇点的传播
- 批准号:
2307680 - 财政年份:2023
- 资助金额:
$ 8.92万 - 项目类别:
Continuing Grant
Collaborative Research: Accuracy-Preserving Robust Time-Stepping Methods for Fluid Problems
协作研究:流体问题的保持精度的鲁棒时间步进方法
- 批准号:
2309727 - 财政年份:2023
- 资助金额:
$ 8.92万 - 项目类别:
Standard Grant
Collaborative Research: Fluid infiltration of the continental crust during Laramide flat-slab subduction: a unique tectonic setting
合作研究:拉拉米德平板俯冲期间大陆地壳的流体渗透:独特的构造环境
- 批准号:
2318411 - 财政年份:2023
- 资助金额:
$ 8.92万 - 项目类别:
Standard Grant
Collaborative Research: Shock formation, shock development, and the propagation of singularities in fluid dynamics
合作研究:激波形成、激波发展以及流体动力学中奇点的传播
- 批准号:
2307681 - 财政年份:2023
- 资助金额:
$ 8.92万 - 项目类别:
Continuing Grant
Collaborative Research: IRES Track I: US-Korea Collaboration on Biomimicry and Bio-inspired Fluid Flows (BIOFLOW IRES)
合作研究:IRES 第一轨:美韩仿生学和仿生流体流动合作 (BIOFLOW IRES)
- 批准号:
2329583 - 财政年份:2023
- 资助金额:
$ 8.92万 - 项目类别:
Standard Grant
Collaborative Research: Testing endmember hypotheses for the source of mineralizing fluid(s) in iron oxide - copper - gold (IOCG) deposits
合作研究:测试氧化铁-铜-金 (IOCG) 矿床中矿化流体来源的端元假设
- 批准号:
2233425 - 财政年份:2023
- 资助金额:
$ 8.92万 - 项目类别:
Standard Grant