Collaborative Research: Shock formation, shock development, and the propagation of singularities in fluid dynamics

合作研究:激波形成、激波发展以及流体动力学中奇点的传播

基本信息

  • 批准号:
    2307681
  • 负责人:
  • 金额:
    $ 75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

The motion of compressible fluids, such as gases and plasmas, is characterized by the formation and propagation of shock waves, i.e., thin adjustment fronts created within the fluid and across which the fluid experiences large changes of its state variables. Examples of shock waves abound in nature and technology: sonic booms generated by commercial and military airplanes, bow shocks generated by space vehicles upon re-entry through the atmosphere, and bow shocks created when the solar wind hits the planets, to name a few. Although a good theoretical understanding of the formation and subsequent propagation of shock waves exists for one-dimensional (i.e., planar) flows, the corresponding state of affairs in multiple space dimensions is much less satisfactory. The purpose of this project is to develop a new geometric framework and a new mathematical description of the wave motion that allows for a detailed description of shock formation and the subsequent dynamics of shock waves in multiple space dimensions. This project will also offer research opportunities and collaborative experiences for graduate students and postdocs at the University of California, Davis, and New York University.This project will develop the analytical and geometric framework for resolving one of the foremost unanswered questions in the fields of hyperbolic PDE and mathematical fluid dynamics: the formation and unique propagation of hydrodynamical shocks from smooth initial data, in multiple space dimensions. The first step is called "shock formation". Here the smooth initial data is evolved up to a cusp-like Eulerian spacetime hypersurface of first singularities, where the gradient of the velocity, pressure, density, and energy becomes infinite, but these fields retain Holder 1/3 regularity. The PIs approach to determining the location and the geometry of this cusp-like spacetime hypersurface of first singularities relies upon the construction of a smooth spacetime geometry, together and a new set of hydrodynamic variables in the Arbitrary Eulerian-Lagrangian (ALE) description of acoustic wave propagation. The second step is called "shock development" wherein one uses the analytical description of the solution on the cusp-like spacetime hypersurface of first singularities as Cauchy data, from which the shock surface of discontinuity instantaneously develops. In conjunction with the shock surface, we shall establish the emergence of so-called weak characteristic discontinuities; these are characteristic surfaces that emerge simultaneously (with the shock) from the pre-shock, and along which, gradients of velocity, density, and entropy exhibit one-sided Holder cusps. This framework enables the study of even more complicated physical models such as the magnetohydrodynamic equations (MHD) of plasma flow. Here, unlike the lone classical compressive shock of gas dynamics, six different types of MHD shocks can be analyzed with our approach: a fast shock, a slow shock, and four different intermediate shocks. The latter were observed by the Voyager spacecraft in Earth’s heliosphere, but their mathematical existence, to date, remains in question.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
诸如气体和等离子体的可压缩流体的运动的特征在于冲击波的形成和传播,即,在流体内产生薄的调整前沿,并且流体在该前沿上经历其状态变量的大的变化。冲击波的例子在自然界和技术中比比皆是:商用和军用飞机产生的音爆,航天器重返大气层时产生的弓形冲击,以及太阳风撞击行星时产生的弓形冲击,仅举几例。尽管对于一维(即,平面)流动,多个空间维度中的对应状态就不那么令人满意了。该项目的目的是开发一个新的几何框架和一个新的波动数学描述,以便详细描述冲击波的形成和随后的冲击波在多个空间维度的动态。该项目还将为加州大学戴维斯分校和纽约大学的研究生和博士后提供研究机会和合作经验。该项目将开发分析和几何框架,以解决双曲PDE和数学流体动力学领域中最重要的未回答问题之一:在多个空间维度中,从光滑的初始数据中形成和独特的流体动力学冲击传播。第一步被称为“冲击形成”。在这里,光滑的初始数据被演化为具有第一奇点的尖点状欧拉时空超曲面,在那里速度、压力、密度和能量的梯度变得无穷大,但这些场保持保持器1/3正则性。PI的方法来确定的位置和几何形状的尖状时空超曲面的第一奇点依赖于一个光滑的时空几何结构的建设,在一起和一组新的流体动力学变量的任意欧拉-拉格朗日(ALE)描述的声波传播。第二步被称为“激波发展”,其中一个使用的解析描述的尖点状时空超曲面的第一奇性的柯西数据,从该激波表面的不连续性瞬间发展的解决方案。结合激波面,我们将建立所谓的弱特征不连续面的出现;这些特征面(与激波)同时从预激波中出现,并且沿其沿着,速度、密度和熵的梯度表现出单侧的保持器尖点。这个框架使得研究更复杂的物理模型,如磁流体动力学方程(MHD)的等离子体流。在这里,不同于气体动力学的孤独的经典压缩冲击,六种不同类型的MHD冲击可以用我们的方法进行分析:一个快速冲击,一个缓慢的冲击,和四个不同的中间冲击。后者是由旅行者号航天器在地球的日光层观测到的,但它们的数学存在,迄今为止,仍然是一个问题。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vlad Vicol其他文献

Vlad Vicol的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vlad Vicol', 18)}}的其他基金

CAREER: Nonlinear stability mechanisms and boundary layer singularities in fluid flows
职业:流体流动中的非线性稳定机制和边界层奇点
  • 批准号:
    1911413
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
CAREER: Nonlinear stability mechanisms and boundary layer singularities in fluid flows
职业:流体流动中的非线性稳定机制和边界层奇点
  • 批准号:
    1652134
  • 财政年份:
    2017
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Mathematical Analysis of Fluid Flow at High Reynolds Number from the Point of View of Turbulence
从湍流角度进行高雷诺数流体流动的数学分析
  • 批准号:
    1514771
  • 财政年份:
    2015
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Regularity, stability, and singular limits in fluid dynamics
流体动力学的规律性、稳定性和奇异极限
  • 批准号:
    1348193
  • 财政年份:
    2013
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Regularity, stability, and singular limits in fluid dynamics
流体动力学的规律性、稳定性和奇异极限
  • 批准号:
    1211828
  • 财政年份:
    2012
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Shock formation, shock development, and the propagation of singularities in fluid dynamics
合作研究:激波形成、激波发展以及流体动力学中奇点的传播
  • 批准号:
    2307680
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Collaborative Research: Plastic Ceramics: The Role of Grain Boundaries During Laser Shock Peening
合作研究:塑料陶瓷:晶界在激光冲击强化过程中​​的作用
  • 批准号:
    2246121
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme Thermal Transport Events in Supersonic and Hypersonic Shock Wave-Turbulence Interactions
合作研究:超音速和高超音速冲击波-湍流相互作用中的极端热传输事件
  • 批准号:
    2041618
  • 财政年份:
    2021
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: Extreme Thermal Transport Events in Supersonic and Hypersonic Shock Wave-Turbulence Interactions
合作研究:超音速和高超音速冲击波-湍流相互作用中的极端热传输事件
  • 批准号:
    2041622
  • 财政年份:
    2021
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: The Macroeconomy, Labor Markets, and Economic Mobility from the Civil War to Today: New High Frequency Data on Local Economic Shock
合作研究:从内战至今的宏观经济、劳动力市场和经济流动性:有关当地经济冲击的新高频数据
  • 批准号:
    2049393
  • 财政年份:
    2021
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: Plastic Ceramics: The Role of Grain Boundaries During Laser Shock Peening
合作研究:塑料陶瓷:晶界在激光冲击强化过程中​​的作用
  • 批准号:
    2023314
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: Plastic Ceramics: The Role of Grain Boundaries During Laser Shock Peening
合作研究:塑料陶瓷:晶界在激光冲击强化过程中​​的作用
  • 批准号:
    2023404
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: Nanodiamond Particle Fabrication by Confined Laser Shock Detonation for Drug Delivery and Other Applications
合作研究:通过受限激光冲击爆炸制造纳米金刚石颗粒用于药物输送和其他应用
  • 批准号:
    1825739
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: Feasibility and Fundamentals of Femtosecond-Laser Shock Peening Without Protective Coating in Air Environment
合作研究:空气环境中无保护涂层飞秒激光冲击强化的可行性和基础
  • 批准号:
    1762678
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: Nanodiamond Particle Fabrication by Confined Laser Shock Detonation for Drug Delivery and Other Applications
合作研究:通过受限激光冲击爆炸制造纳米金刚石颗粒用于药物输送和其他应用
  • 批准号:
    1826439
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了