EAGER: Collaborative Research: Bayesian Reasoning Machine on a Magneto-tunneling Junction Network

EAGER:协作研究:磁隧道结网络上的贝叶斯推理机

基本信息

  • 批准号:
    2001239
  • 负责人:
  • 金额:
    $ 12.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Bayesian networks are a computational model that is very efficient for computing in the presence of uncertainty. It excels in such tasks as predicting stock market behavior, disease progression, etc. It is ideal for taking an event that occurred and predicting the likelihood of different known causes to have been the contributing factor. For example, given the symptoms of a patient, it can compute the probabilities of various diseases that could be causing the symptoms. Unfortunately, implementing Bayesian networks usually requires complex hardware that is expensive, prone to failure, dissipates too much energy and consumes too much area on a computer chip. The goal of this research is to overcome these disadvantages by replacing traditional electronic hardware with magnetic devices that interact with each other in a special way to elicit Bayesian inference. This can reduce the hardware complexity and all associated costs dramatically, making Bayesian networks compact and efficient. This research will establish the viability of this approach through extensive simulations. Graduate students will be trained in this field to produce a pool of skilled scientists and engineers with cutting-edge knowledge.Bayesian networks for computing in the presence of uncertainty leverage Bayesian inference engines implemented with complex hardware that often involves microcontrollers, shift registers, analog-to-digital converters, logic gates, etc. that dissipate exorbitant amounts of energy and have enormous footprints on a chip. It ha recently been shown by the project team that magnetic tunnel junctions (MTJs) that interact with each other by means of dipole coupling can implement Bayesian networks with vastly reduced energy cost and much smaller footprints. Two dipole coupled MTJs A and B can realize an extremely efficient 2-node Bayesian network, where the probabilities of high and low resistance states of MTJ A are set by current or voltage, while the (random) resistance state of MTJ B is determined by varying degrees of dipole coupling between the two MTJs. The degree of dipole coupling is tuned with local strain applied to the soft layer of MTJ B using electrical excitation. This allows one to generate any desired anti-correlation or correlation between the resistance states of the two MTJs that can be varied between 0% and 100% using electrical excitation. In turn, this allows the generation of programmable conditional probabilities that can be exploited for Bayesian networks. This research will build a simulation base for this approach, test the viability of MTJ-based inference engines under different scenarios and design optimal sub-systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
贝叶斯网络是一种计算模型,在存在不确定性的情况下非常有效。它擅长预测股票市场行为,疾病进展等任务,它是理想的采取发生的事件,并预测不同的已知原因的可能性已成为促成因素。例如,给定患者的症状,它可以计算可能导致症状的各种疾病的概率。不幸的是,实现贝叶斯网络通常需要复杂的硬件,这些硬件价格昂贵,容易出现故障,消耗太多的能量,并且在计算机芯片上消耗太多的面积。本研究的目标是克服这些缺点,用磁性设备取代传统的电子硬件,以一种特殊的方式相互作用,以引出贝叶斯推理。这可以大大降低硬件复杂性和所有相关成本,使贝叶斯网络紧凑而高效。这项研究将通过广泛的模拟来确定这种方法的可行性。研究生将接受该领域的培训,培养出一批具有尖端知识的熟练科学家和工程师。贝叶斯网络在不确定性存在的情况下利用贝叶斯推理引擎进行计算,这些推理引擎通常涉及微控制器,移位寄存器,模数转换器,逻辑门等复杂硬件,这些硬件消耗了大量的能量,并且在芯片上有巨大的足迹。项目团队最近表明,通过偶极耦合相互作用的磁性隧道结(MTJ)可以实现贝叶斯网络,大大降低能源成本和更小的足迹。 两个偶极耦合的MTJ A和B可实现极其有效的2节点贝叶斯网络,其中MTJ A的高电阻状态和低电阻状态的概率由电流或电压设定,而MTJ B的(随机)电阻状态由两个MTJ之间的偶极耦合的变化程度确定。偶极耦合的程度通过使用电激励施加到MTJ B的软层的局部应变来调谐。这允许在两个MTJ的电阻状态之间产生任何期望的反相关或相关,其可以使用电激励在0%和100%之间变化。反过来,这允许生成可用于贝叶斯网络的可编程条件概率。这项研究将为这种方法建立一个模拟基础,测试基于MTJ的推理引擎在不同场景下的可行性,并设计最佳的子系统。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Cost of Energy-Efficiency in Digital Hardware: The Trade-off between Energy Dissipation, Energy-Delay Product and Reliability in Electronic and Magnetic Binary Switches
数字硬件的能效成本:电子和磁性二进制开关的能量耗散、能量延迟乘积与可靠性之间的权衡
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rahman, R;Bandyopadhyay, S.
  • 通讯作者:
    Bandyopadhyay, S.
Nanomagnetic Boolean Logic—The Tempered (and Realistic) Vision
  • DOI:
    10.1109/access.2021.3049333
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Supriyo Bandyopadhyay
  • 通讯作者:
    Supriyo Bandyopadhyay
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amit Trivedi其他文献

A304 - Mathematical Model for Predicting the Increase in Office Visits Realized after Bariatric Surgery when 100% Compliance with ASMBS Post-Operative Follow-Up Guidelines is Achieved
  • DOI:
    10.1016/j.soard.2018.09.227
  • 发表时间:
    2018-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Amit Trivedi;Sarah Wong
  • 通讯作者:
    Sarah Wong
Ultra-rapid genomic testing, a game changer in facilitating disease modifying treatment in a critically ill newborn
  • DOI:
    10.1016/j.pathol.2022.12.058
  • 发表时间:
    2023-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Shanti Balasubramaniam;Katherine Li;Alan Ma;Sebastian Lunke;Amit Trivedi;Deepak Gill;Julie Curtin;Zornitza Stark
  • 通讯作者:
    Zornitza Stark
P88: Staged repair of slipped laparoscopic adjustable gastric band
  • DOI:
    10.1016/j.soard.2008.03.150
  • 发表时间:
    2008-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Christopher W. Finnell;Douglas R. Ewing;Hans J. Schmidt;Amit Trivedi
  • 通讯作者:
    Amit Trivedi
Retroperitoneoscopic Right-Sided Donor Nephrectomy with Pre- and Postcaval Renal Arteries
  • DOI:
    10.1016/j.urology.2008.06.006
  • 发表时间:
    2008-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Pranjal R. Modi;S.J. Rizvi;Rahul Gupta;Suhag Patel;Amit Trivedi
  • 通讯作者:
    Amit Trivedi
P-105 Lapaoscopic placement of adjustable gastric band after failed weight loss after gastric bypass
  • DOI:
    10.1016/j.soard.2011.04.107
  • 发表时间:
    2011-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Shomaf Nakhjo;Sebastian Eid;Hans Schmidt;Amit Trivedi;Doug R. Ewing
  • 通讯作者:
    Doug R. Ewing

Amit Trivedi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amit Trivedi', 18)}}的其他基金

FuSe-TG: Ultra-low-power and Robust Autonomy of Edge Robotics with 2D Semiconductors
FuSe-TG:采用 2D 半导体的边缘机器人的超低功耗和鲁棒自主性
  • 批准号:
    2235207
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
CAREER: Robust and Ultra-low-power Spatial Intelligence
职业:稳健且超低功耗的空间智能
  • 批准号:
    2046435
  • 财政年份:
    2021
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: FET: Medium: Neuroplane: Scalable Deep Learning through Gate-tunable MoS2 Crossbars
合作研究:FET:媒介:神经平面:通过门可调 MoS2 交叉开关进行可扩展深度学习
  • 批准号:
    2106824
  • 财政年份:
    2021
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了