I-Corps: Accurate, Contiguous and Portable Wireless Intraocular Contact Lens Pressure Sensors

I-Corps:准确、连续、便携式无线眼内隐形眼镜压力传感器

基本信息

  • 批准号:
    2001328
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-02-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

The broader impact/commercial potential of this I-Corps project is the development of a device to monitor high eye pressure (intraocular pressure or IOP), the only known sign of glaucoma, which could cause vision loss and influence patients’ quality of life. Glaucoma is a leading cause of blindness for people over 60 years old and affects approximately 3 million people in the USA. The incidence of glaucoma is expected to rise to 76 million by 2020 and 112 million people by 2040 worldwide. Unfortunately, glaucoma is not curable, but it is manageable with proper treatments. Although IOP is a highly dynamic parameter, conventional measurements fail to track it for a 24-hour period. A compact and portable wireless contact lens sensor (CLS) system can enable continuous, real-time monitoring of IOP and ensure clinical safety and patient comfort. This type of system could be adapted for other pressure measurements in other parts of the body as well. This I-Corps project is based on the development of parity-time (PT) symmetry in quantum mechanics into radio-frequency (RF) telemetric sensing systems, enabling new ways to enhance resolution, accuracy, and sensitivity of versatile zero-power wireless pressure sensors (e.g., intraocular, intracranial and other biological pressures). Specifically, the team’s PT telemetry technologies employed an active loss-compensation circuit, which not only can compensate the power dissipation in minimally-invasive microsensors, but also allows a large shift of peak frequency under changes in vital physiological factors (i.e., a higher sensitivity), thanks to the eigenvalue bifurcation effect around the exceptional points found in PT systems. This wireless readout technology will be exploited to continuously record IOP levels from a biocompatible, monolithically microfabricated CLS, with enhanced sensitivity and resolvability. In addition, machine learning and signal processing algorithms will be exploited to address the long-term stability and signal drift issues in the practical IOP monitoring.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个i-Corps项目的更广泛的影响/商业潜力是开发一种设备来监测高眼压(眼压或眼压),这是青光眼的唯一已知迹象,可能导致视力丧失并影响患者的生活质量。青光眼是60岁以上人群失明的主要原因,在美国大约有300万人受到青光眼的影响。预计到2020年,全球青光眼发病率将上升到7600万,到2040年,全球青光眼发病率将上升到1.12亿。不幸的是,青光眼是不可治愈的,但通过适当的治疗是可以控制的。尽管眼压是一个高度动态的参数,但常规测量无法对其进行24小时的跟踪。紧凑便携的无线隐形眼镜传感器(CLS)系统可以实现对眼压的连续、实时监测,并确保临床安全和患者舒适度。这种类型的系统也可以适用于身体其他部位的其他压力测量。该i-Corps项目基于量子力学中的奇偶时间(PT)对称性发展到射频(RF)遥测传感系统,从而实现了提高多功能零功率无线压力传感器(例如,眼内、颅内和其他生物压力)的分辨率、精度和灵敏度的新方法。具体地说,该团队的PT遥测技术采用了有源损耗补偿电路,不仅可以补偿微创微传感器的功率损耗,而且由于PT系统中发现的例外点周围的特征值分叉效应,还允许在重要生理因素变化(即更高的灵敏度)下大幅移动峰值频率。这种无线读出技术将被用来连续记录生物兼容的单片微型CLS的眼压水平,并具有更高的灵敏度和分辨率。此外,将利用机器学习和信号处理算法来解决实际眼压监测中的长期稳定性和信号漂移问题。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pai-Yen Chen其他文献

Exceptional points enhance wireless readout
奇异点增强无线读出
  • DOI:
    10.1038/s41928-019-0293-3
  • 发表时间:
    2019-08-15
  • 期刊:
  • 影响因子:
    40.900
  • 作者:
    Pai-Yen Chen;Ramy El-Ganainy
  • 通讯作者:
    Ramy El-Ganainy
High-Order Parity-Time-Symmetric Electromagnetic Sensors

Pai-Yen Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pai-Yen Chen', 18)}}的其他基金

Electromagnetic Physically-Unclonable Functions Generated by Graphene Radio-Frequency Circuits
石墨烯射频电路产生的电磁物理不可克隆功能
  • 批准号:
    2229659
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Collaborative Research: Wavelength-Scalable, Room-Temperature Mid-Infrared Photodetectors Based on Multiphoton-Assisted Tunneling
合作研究:基于多光子辅助隧道的波长可扩展、室温中红外光电探测器
  • 批准号:
    2210977
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CAREER: Integrated Research and Education on Self-Activated, Transparent Harmonics-Based Wireless Sensing Systems Using Graphene Bioelectronics
职业:利用石墨烯生物电子学对自激活、透明谐波无线传感系统进行综合研究和教育
  • 批准号:
    1914420
  • 财政年份:
    2018
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CAREER: Integrated Research and Education on Self-Activated, Transparent Harmonics-Based Wireless Sensing Systems Using Graphene Bioelectronics
职业:利用石墨烯生物电子学对自激活、透明谐波无线传感系统进行综合研究和教育
  • 批准号:
    1752123
  • 财政年份:
    2018
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Parity-Time Symmetric Wireless Telemetry Systems for Implantable Microsensors
用于植入式微传感器的奇偶时间对称无线遥测系统
  • 批准号:
    1917678
  • 财政年份:
    2018
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Parity-Time Symmetric Wireless Telemetry Systems for Implantable Microsensors
用于植入式微传感器的奇偶时间对称无线遥测系统
  • 批准号:
    1711409
  • 财政年份:
    2017
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似海外基金

A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
  • 批准号:
    24K07389
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Adapting Position-Based Dynamics as a Biophysically Accurate and Efficient Modeling Framework for Dynamic Cell Shapes
采用基于位置的动力学作为动态细胞形状的生物物理准确且高效的建模框架
  • 批准号:
    24K16962
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The challenge of scaling methane fluxes in mangrove and mountain forests for an accurate methane budget
缩放红树林和山地森林甲烷通量以获得准确的甲烷预算的挑战
  • 批准号:
    24K01797
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
"Mimicking Human Head Sound Responses": Towards an Anatomically Accurate Head Prototype for Bone Conduction Crosstalk Cancellation Analysis with Humans
“模仿人类头部声音反应”:构建解剖学上准确的头部原型,用于人类骨传导串扰消除分析
  • 批准号:
    24K20786
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
  • 批准号:
    BB/Y513763/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grant
Developing an accurate non-Newtonian surface rheology model
开发精确的非牛顿表面流变模型
  • 批准号:
    EP/Y031644/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grant
Accurate analysis of PTM enzymes with an mRNA display/deep learning platform
利用 mRNA 显示/深度学习平台准确分析 PTM 酶
  • 批准号:
    23K23485
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Framework for Fast, Accurate, and Explainable Computerized Adaptive Language Test
快速、准确且可解释的计算机化自适应语言测试框架
  • 批准号:
    24K20903
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: CRISPR-based biosensors for the ultra-accurate detection of disease-related single nucleotide polymorphisms (SNPs)
职业:基于 CRISPR 的生物传感器,用于超准确检测与疾病相关的单核苷酸多态性 (SNP)
  • 批准号:
    2421137
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
CAREER: CRISPR-based biosensors for the ultra-accurate detection of disease-related single nucleotide polymorphisms (SNPs)
职业:基于 CRISPR 的生物传感器,用于超准确检测与疾病相关的单核苷酸多态性 (SNP)
  • 批准号:
    2339868
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了