Conformal Blocks and Affine Grassmannian Associated to Parahoric Group Schemes
共形块和仿射格拉斯曼与超视群方案相关
基本信息
- 批准号:2001365
- 负责人:
- 金额:$ 15.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Representation theory is a branch of algebra studying symmetries, especially symmetries of linear mathematical structures, using groups of invertible matrices. On the other hand, algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometric problems about the sets of zeros of multivariable polynomials. The research supported by this NSF award is at the crossroads of representation theory and algebraic geometry, to use representation theory to solve geometric problems and to use geometric methods to understand representation theory.The research projects center on two main themes. In the first, the PI will develop a theory of conformal blocks for general parahoric group schemes over curves. The research will focus on Pappas-Rapoport conjecture, vanishing conjecture and Verlinde formula for twisted conformal blocks. This will lead to applications in orbifold conformal field theory and geometric Langlands program for parahoric group schemes. For the second theme, the PI will develop connections between the geometry of twisted affine Grassmannian and representation theory. The geometry of affine Grassmannians can be related to Kac-Moody theory, representation theory of reductive groups and their bases via geometric Satake correspondence, and it also plays crucial role in symplectic duality. The research along this direction will advance the role of twisted affine Grassmannians in Kac-Moody theory, ramified geometric Satake, symplectic duality, and a connection with Springer theory for symmetric spaces.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
表示论是代数的一个分支,研究对称,特别是线性数学结构的对称,使用可逆矩阵群。另一方面,代数几何是基于使用抽象的代数技术,主要来自交换代数,来解决关于多变量多项式的零集的几何问题。本NSF奖支持的研究处于表征理论与代数几何的交叉点,用表征理论解决几何问题,用几何方法理解表征理论。研究项目主要围绕两个主题展开。首先,PI将发展曲线上一般抛物面群方案的共形块理论。重点研究扭曲共形块的Pappas-Rapoport猜想、消失猜想和Verlinde公式。这将导致在轨道共形场理论和几何朗兰兹规划中的应用。对于第二个主题,PI将发展扭曲仿射格拉斯曼几何与表征理论之间的联系。仿射Grassmannians的几何可以通过几何Satake对应与Kac-Moody理论、约化群的表示理论及其基联系起来,在辛对偶中也起着至关重要的作用。沿着这一方向的研究将推进扭曲仿射Grassmannians在Kac-Moody理论、分支几何Satake、辛对偶以及与对称空间施普林格理论的联系中的作用。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A combinatorial study of affine Schubert varieties in affine Grassmannian
仿射格拉斯曼中仿射舒伯特簇的组合研究
- DOI:10.1007/s00031-020-09634-9
- 发表时间:2021
- 期刊:
- 影响因子:0.7
- 作者:Besson, Marc;Hong, Jiuzu
- 通讯作者:Hong, Jiuzu
Nilpotent varieties in symmetric spaces and twisted affine Schubert varieties
- DOI:10.1090/ert/613
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Jiuzu Hong;Korkeat Korkeathikhun
- 通讯作者:Jiuzu Hong;Korkeat Korkeathikhun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiuzu Hong其他文献
Polynomial functors and categorifications of Fock space II
Fock 空间 II 的多项式函子和分类
- DOI:
10.1016/j.aim.2013.01.004 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Jiuzu Hong;Oded Yacobi - 通讯作者:
Oded Yacobi
Conformal blocks, Verlinde formula and diagram automorphisms
共形块、Verlinde 公式和图自同构
- DOI:
10.1016/j.aim.2019.106731 - 发表时间:
2016 - 期刊:
- 影响因子:1.7
- 作者:
Jiuzu Hong - 通讯作者:
Jiuzu Hong
Tensor invariants, saturation problems, and Dynkin automorphisms
张量不变量、饱和问题和 Dynkin 自同构
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Jiuzu Hong;Li - 通讯作者:
Li
Subdiagonal Algebras with the Factorization Property
具有因式分解性质的次对角代数
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Jiuzu Hong - 通讯作者:
Jiuzu Hong
Polynomial functors and categorifications of Fock space II: Schur-Weyl duality
Fock 空间 II 的多项式函子和分类:Schur-Weyl 对偶性
- DOI:
10.1007/978-1-4939-1590-3_12 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Jiuzu Hong;Oded Yacobi - 通讯作者:
Oded Yacobi
Jiuzu Hong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiuzu Hong', 18)}}的其他基金
Conference: Geometric representation theory and moduli spaces
会议:几何表示理论和模空间
- 批准号:
2328483 - 财政年份:2023
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
相似国自然基金
基于支链淀粉building blocks构建优质BE突变酶定向修饰淀粉调控机制的研究
- 批准号:31771933
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
FABB-HVDC (Future Aerospace power conversion Building Blocks for High Voltage DC electrical power systems)
FABB-HVDC(高压直流电力系统的未来航空航天电力转换构建模块)
- 批准号:
10079892 - 财政年份:2024
- 资助金额:
$ 15.5万 - 项目类别:
Legacy Department of Trade & Industry
Assembling the building blocks in the blueprint of the embryonic head
在胚胎头部的蓝图中组装积木
- 批准号:
DP240101571 - 财政年份:2024
- 资助金额:
$ 15.5万 - 项目类别:
Discovery Projects
Digital building blocks of elementary school foreign language reading motivation
小学外语阅读动机的数字积木
- 批准号:
23K25344 - 财政年份:2024
- 资助金额:
$ 15.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAS: Degradable Polyacrylates From Natural and Scalable Building Blocks
CAS:来自天然和可扩展构件的可降解聚丙烯酸酯
- 批准号:
2348679 - 财政年份:2024
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
Development of a cancer immunoregenerative therapy that blocks function-suppressive RNA editing signals from cancer cells to immune cells.
开发一种癌症免疫再生疗法,阻断从癌细胞到免疫细胞的功能抑制性 RNA 编辑信号。
- 批准号:
23K08173 - 财政年份:2023
- 资助金额:
$ 15.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stereoselective Reactions of Aromatic Building Blocks
芳香族嵌段的立体选择性反应
- 批准号:
2246693 - 财政年份:2023
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
PFI-TT: Commercialization of Low-Carbon Concrete Blocks at Scale
PFI-TT:低碳混凝土砌块的大规模商业化
- 批准号:
2234543 - 财政年份:2023
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
Development of a targeted TGF-b therapeutic that selectively blocks lung fibrosis in idiopathic pulmonary fibrosis (IPF) patients
开发选择性阻断特发性肺纤维化 (IPF) 患者肺纤维化的靶向 TGF-b 疗法
- 批准号:
10697961 - 财政年份:2023
- 资助金额:
$ 15.5万 - 项目类别:
Establishment of underwater electromechanically-driven soft robots consisting solely of chemical blocks
建立仅由化学块组成的水下机电驱动软机器人
- 批准号:
23K17738 - 财政年份:2023
- 资助金额:
$ 15.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Catalytic Hydrofluorination for the Assembly of Chiral Fluorinated Building Blocks
用于组装手性氟化砌块的催化氢氟化反应
- 批准号:
EP/X013081/1 - 财政年份:2023
- 资助金额:
$ 15.5万 - 项目类别:
Research Grant