F-Crystals, Prismatization, and Shtukas
F 晶体、棱镜化和 Shtukas
基本信息
- 批准号:2001425
- 负责人:
- 金额:$ 31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The project supports research in algebraic geometry. This part of mathematics studies algebraic varieties, i.e., sets of solutions of systems of algebraic equations. Modern algebraic geometry also studies algebraic stacks; these are geometric objects similar to algebraic varieties, whose points are allowed to have nontrivial symmetries. The main theme of this project is to use algebraic stacks to study prismatic cohomology, which is a very promising cohomology theory of p-adic algebraic varieties introduced recently by Bhatt and Scholze. The project also provides research training opportunities for graduate students.The principal investigator plans to introduce prismatization functors and to use them to construct a natural theory of coefficients for prismatic cohomology in the spirit of what Fontaine and Jannsen call F-gauges. He also plans to develop a version of the prismatic theory in which the field of p-adic numbers is replaced by a local field of characteristic p and to find an explicit description of the category of crystals in this context. Another goal is to describe in terms of formal groups the Tannakian category of convergent F-isocrystals on a smooth variety over a perfect field of characteristic p.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目支持代数几何的研究。数学的这一部分研究代数簇,即,代数方程组的解。现代代数几何也研究代数栈;这些是类似于代数簇的几何对象,其点允许具有非平凡对称性。本项目的主题是利用代数栈来研究棱柱上同调,棱柱上同调是Bhatt和Scholze最近提出的一个非常有前途的p-adic代数簇的上同调理论。该项目还为研究生提供了研究培训的机会。首席研究员计划引入棱镜化函子,并利用它们来构建一个自然的理论,棱镜上同调系数的精神是什么方丹和詹森所谓的F-规范。他还计划发展一个版本的棱柱理论,其中领域的p-adic号码是取代当地领域的特点p和找到一个明确的描述类别的晶体在这方面。另一个目标是描述正式团体的Tannakian类收敛的F-isocrystals在一个完美的领域的特征p.这个奖项反映了NSF的法定使命,并已被认为是值得支持的,通过使用基金会的智力价值和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vladimir Drinfeld其他文献
Vladimir Drinfeld的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vladimir Drinfeld', 18)}}的其他基金
Interactions Between Representation Theory and Algebraic Geometry
表示论与代数几何之间的相互作用
- 批准号:
1707808 - 财政年份:2017
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Geometric Langlands Transform and Dualities
几何朗兰兹变换和对偶性
- 批准号:
1303100 - 财政年份:2013
- 资助金额:
$ 31万 - 项目类别:
Continuing Grant
Collaborative Research: The Geometric Dual Space of A Unipotent Group in Characteristic p
合作研究:特征p中单能群的几何对偶空间
- 批准号:
1001660 - 财政年份:2010
- 资助金额:
$ 31万 - 项目类别:
Continuing Grant
Geometric Langlands Program and Beyond
几何朗兰兹纲领及其他
- 批准号:
0401164 - 财政年份:2004
- 资助金额:
$ 31万 - 项目类别:
Continuing Grant
Geometric Langlands Program and Infinite-dimensional Algebraic Geometry
几何朗兰兹纲领和无限维代数几何
- 批准号:
0100108 - 财政年份:2001
- 资助金额:
$ 31万 - 项目类别:
Continuing Grant