Character Sheaves for Unipotent Groups
单能组的角色滑轮
基本信息
- 批准号:0701106
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigators conduct research in geometric representation theory for unipotent groups over fields of positive characteristic and in the theory of modular tensor categories. They define and study the notion of a character sheaf on a unipotent algebraic group. Using this notion they introduce certain subcategories, called "blocks", of the equivariant derived category of bounded constructible l-adic complexes on this group. The principal investigators formulate certain conjectures about the structure of the blocks and the relation between character sheaves on a unipotent group and the irreducible characters of its group of points over a finite field; their goal is to prove the conjectures. One of the conjectures says that each block is equivalent to the derived category of some modular category, another conjecture describes all possible modular categories that can arise in this way.The subject of the research lies at the intersection of several domains of modern mathematics and mathematical physics -- geometric representation theory, algebraic geometry, and conformal field theory. The research will deepen our understanding of geometric representation theory by developing it in the new context of unipotent groups in positive characteristic, where this theory has not been studied before. It will also strengthen the connection between geometric representation theory and the theory of modular tensor categories.
主要研究人员在正特征域上的幂幺群的几何表示理论和模张量范畴理论方面进行研究。他们定义和研究的概念,一个字符层上的一个幂幺代数群。使用这一概念,他们介绍了某些子类别,称为“块”,等变派生类别的有界建设的L-进复合物对这个群体。主要研究人员制定了一些关于块的结构和幂幺群上的特征层与有限域上点群的不可约特征之间的关系的命题;他们的目标是证明这些命题。其中一个猜想说每个块都等价于某个模范畴的导出范畴,另一个猜想描述了所有可能的模范畴都可以通过这种方式产生。研究的主题位于现代数学和数学物理的几个领域的交叉点--几何表示论,代数几何和共形场论。这一研究将加深我们对几何表示理论的理解,使其在正特征幂幺群的新背景下得到发展,而这一理论以前从未被研究过。它也将加强几何表示理论和模张量范畴理论之间的联系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vladimir Drinfeld其他文献
Vladimir Drinfeld的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vladimir Drinfeld', 18)}}的其他基金
F-Crystals, Prismatization, and Shtukas
F 晶体、棱镜化和 Shtukas
- 批准号:
2001425 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
Interactions Between Representation Theory and Algebraic Geometry
表示论与代数几何之间的相互作用
- 批准号:
1707808 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Geometric Langlands Transform and Dualities
几何朗兰兹变换和对偶性
- 批准号:
1303100 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: The Geometric Dual Space of A Unipotent Group in Characteristic p
合作研究:特征p中单能群的几何对偶空间
- 批准号:
1001660 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Continuing Grant
Geometric Langlands Program and Infinite-dimensional Algebraic Geometry
几何朗兰兹纲领和无限维代数几何
- 批准号:
0100108 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
Perverse sheaves and schobers
反常的滑轮和 schobers
- 批准号:
23K20205 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Parahoric Character Sheaves and Representations of p-Adic Groups
隐喻特征束和 p-Adic 群的表示
- 批准号:
2401114 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Representation theory of affine Lie algebras and enumerative geometry of sheaves on toric surfaces and threefolds
仿射李代数表示论与复曲面和三重滑轮的枚举几何
- 批准号:
567867-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postdoctoral Fellowships
Sheaf Representations of Algebras and Logic of Sheaves
代数的层表示和层逻辑
- 批准号:
22K13950 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Representations of finite reductive groups, character sheaves and theory of total positivity
有限约简群的表示、特征轮和总正性理论
- 批准号:
2153741 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Moduli spaces of sheaves on Hermitian manifolds
厄米流形上滑轮的模空间
- 批准号:
RGPIN-2018-04379 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Expanders, Sheaves on Graphs, and Applications
扩展器、图表上的滑轮和应用程序
- 批准号:
RGPIN-2017-04463 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Moduli Spaces and Applications of Constructible Sheaves
可构造滑轮的模空间和应用
- 批准号:
2104087 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant