CAREER: Hierarchical Models for Spatial Extremes

职业:空间极值的层次模型

基本信息

  • 批准号:
    2001433
  • 负责人:
  • 金额:
    $ 31.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Rare events can have crippling effects on economies, infrastructure, and human health and well being. But in order to make sound decisions, understanding how large the most severe events are likely to be is imperative. The PI will focus on developing statistical tools for understanding the spatial structure of the most extreme events. These new tools will improve on existing models because they will be both more realistic and more computationally tractable. The PI will also apply these tools to help scientists and policymakers study risks posed by severe environmental phenomena like inland floods, wildfires, and coastal storm surges. Furthermore, the PI will organize workshops to foster closer integration of statistical and Earth science research, as well as develop graduate courses and a textbook focused on modern statistical methods for Earth science.The PI will develop stochastic models for extreme events in space that are 1) flexible enough to transition across different classes of extremal dependence, and 2) permit inference through likelihood functions that can be computed for large datasets. It will accomplish these modeling goals by representing stochastic dependence relationships conditionally, which will induce desirable tail dependence properties and allow efficient inference through Markov chain Monte Carlo (MCMC). The first research component will develop sub-asymptotic models for spatial extremes using max-infinitely divisible (max-id) processes, a generalization of the limiting max-stable class of processes, based on a conditional representation. The second research component will develop sub-asymptotic spatial models for extremes based on scale mixtures of spatial Gaussian processes. The PI will conduct closely interwoven computational development and theoretical explication of the joint tail dependence that the proposed hierarchically specified max-id and scale mixture processes induce. Finally, the PI will apply these models to problems of high societal impact, such as extreme precipitation risk, wildfire susceptibility, and coastal storm surge exposure. The PI will enhance connections between extreme value statisticians and communities of climate and atmospheric scientists, mitigation researchers, and stakeholders, through 1) biannual international workshops on weather and climate extremes, 2) a Ph.D. level course in spatial statistics which will include new advances and applications of spatial extremes, and 3) writing the textbook Modern Statistics for Earth Scientists. The PI also will add modules on extremes to Penn State's Sustainable Climate Risk Management (SCRiM) summer school, and contribute to SCRiM's electronic resources and interactive teaching materials for educators, decision makers, underrepresented groups, and the general public. The PI will strengthen existing collaborations with government agencies which are responsible for communicating and mitigating risk to the public posed by extremal environment phenomena.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
罕见事件可能对经济、基础设施、人类健康和福祉产生严重影响。但为了做出合理的决策,了解最严重的事件可能有多大是必要的。PI将侧重于开发统计工具,以了解最极端事件的空间结构。这些新工具将改进现有的模型,因为它们将更真实,更易于计算。 PI还将应用这些工具帮助科学家和政策制定者研究内陆洪水、野火和沿海风暴潮等严重环境现象带来的风险。此外,PI将组织讲习班,促进统计和地球科学研究的更紧密结合,并开发研究生课程和侧重于地球科学现代统计方法的教科书。PI将开发空间极端事件的随机模型,这些模型1)足够灵活,可以在不同的极端依赖类别之间过渡,以及2)允许通过可为大数据集计算的似然函数进行推断。 它将通过有条件地表示随机依赖关系来实现这些建模目标,这将引起期望的尾部依赖特性,并通过马尔可夫链蒙特卡罗(MCMC)进行有效的推理。第一个研究组成部分将使用最大无限可分(max-id)过程,一种基于条件表示的极限最大稳定过程类的推广,开发空间极值的亚渐近模型。 第二个研究部分将基于空间高斯过程的尺度混合开发极端情况的亚渐进空间模型。 PI将进行紧密交织的计算开发和理论解释的联合尾部依赖,建议分层指定的最大ID和规模混合过程诱导。 最后,PI将这些模型应用于高社会影响的问题,如极端降水风险,野火易感性和沿海风暴潮暴露。 PI将加强极端值统计学家与气候和大气科学家,缓解研究人员和利益相关者社区之间的联系,通过1)一年两次的天气和气候极端国际研讨会,2)博士学位。在空间统计水平的课程,其中将包括新的进展和空间极端的应用,和3)编写教科书现代统计地球科学家。 PI还将为宾州州立大学的可持续气候风险管理(SCRiM)暑期学校增加极端情况模块,并为SCRiM的电子资源和互动教材做出贡献,供教育工作者,决策者,代表性不足的群体和公众使用。 PI将加强与政府机构的现有合作,这些机构负责沟通和减轻极端环境现象对公众造成的风险。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Extreme Value-Based Methods for Modeling Elk Yearly Movements
基于极值的麋鹿年度活动建模方法
  • DOI:
    10.1007/s13253-018-00342-2
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wijeyakulasuriya, Dhanushi A.;Hanks, Ephraim M.;Shaby, Benjamin A.;Cross, Paul C.
  • 通讯作者:
    Cross, Paul C.
Hierarchical Transformed Scale Mixtures for Flexible Modeling of Spatial Extremes on Datasets With Many Locations
用于对多位置数据集进行空间极值灵活建模的分层变换尺度混合
A Hierarchical Max-Infinitely Divisible Spatial Model for Extreme Precipitation
Projecting Flood-Inducing Precipitation with a Bayesian Analogue Model
Reference Priors for the Generalized Extreme Value Distribution
广义极值分布的参考先验
  • DOI:
    10.5705/ss.202021.0258
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Zhang, Likun;Shaby, Benjamin A.
  • 通讯作者:
    Shaby, Benjamin A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Shaby其他文献

Benjamin Shaby的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Shaby', 18)}}的其他基金

Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
  • 批准号:
    2308680
  • 财政年份:
    2023
  • 资助金额:
    $ 31.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: Combining Heterogeneous Data Sources to Identify Genetic Modifiers of Diseases
合作研究:结合异质数据源来识别疾病的遗传修饰因素
  • 批准号:
    2309825
  • 财政年份:
    2023
  • 资助金额:
    $ 31.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: Combining Heterogeneous Data Sources to Identify Genetic Modifiers of Diseases
合作研究:结合异质数据源来识别疾病的遗传修饰因素
  • 批准号:
    2223133
  • 财政年份:
    2022
  • 资助金额:
    $ 31.4万
  • 项目类别:
    Continuing Grant
Workshop on Risk Analysis for Extremes in the Earth System
地球系统极端事件风险分析研讨会
  • 批准号:
    1932751
  • 财政年份:
    2019
  • 资助金额:
    $ 31.4万
  • 项目类别:
    Standard Grant
CAREER: Hierarchical Models for Spatial Extremes
职业:空间极值的层次模型
  • 批准号:
    1752280
  • 财政年份:
    2018
  • 资助金额:
    $ 31.4万
  • 项目类别:
    Continuing Grant
Workshop on Climate and Weather Extremes
气候和极端天气研讨会
  • 批准号:
    1651714
  • 财政年份:
    2016
  • 资助金额:
    $ 31.4万
  • 项目类别:
    Standard Grant

相似国自然基金

丙烷脱氢Pt@hierarchical zeolite催化剂的设计制备与反应调控
  • 批准号:
    22178062
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目

相似海外基金

Bio-HhOST: Next Generation 3D Tissue Models: Bio-Hybrid Hierarchical Organoid-Synthetic Tissues (Bio-HhOST) Comprised of Live and Artificial Cells.
Bio-HhOST:下一代 3D 组织模型:由活细胞和人造细胞组成的生物混合分层类器官合成组织 (Bio-HhOST)。
  • 批准号:
    10106841
  • 财政年份:
    2024
  • 资助金额:
    $ 31.4万
  • 项目类别:
    EU-Funded
Unbiased estimation in hierarchical models for Clinical trials
临床试验分层模型中的无偏估计
  • 批准号:
    2884930
  • 财政年份:
    2023
  • 资助金额:
    $ 31.4万
  • 项目类别:
    Studentship
Statistical inference in the big data era: using hierarchical models to estimate the socio-economic situation of Colombia's armed conflict victims wit
大数据时代的统计推断:利用分层模型估算哥伦比亚武装冲突受害者的社会经济状况
  • 批准号:
    2750472
  • 财政年份:
    2022
  • 资助金额:
    $ 31.4万
  • 项目类别:
    Studentship
Project 3: From Networks and Structures to Hierarchical Whole­ Cell Models of Cancer
项目 3:从网络和结构到癌症的分层全细胞模型
  • 批准号:
    10704611
  • 财政年份:
    2022
  • 资助金额:
    $ 31.4万
  • 项目类别:
Project 3: From Networks and Structures to Hierarchical Whole­ Cell Models of Cancer
项目 3:从网络和结构到癌症的分层全细胞模型
  • 批准号:
    10525590
  • 财政年份:
    2022
  • 资助金额:
    $ 31.4万
  • 项目类别:
Understanding hierarchical statistical learning of sequential perception with dynamic multiple timescale models
使用动态多时间尺度模型理解顺序感知的分层统计学习
  • 批准号:
    21KK0181
  • 财政年份:
    2021
  • 资助金额:
    $ 31.4万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Accurate Above Ground Biomass Estimation using novel hierarchical datasets to train Machine Learning Models
使用新颖的分层数据集训练机器学习模型进行准确的地上生物量估算
  • 批准号:
    10004871
  • 财政年份:
    2021
  • 资助金额:
    $ 31.4万
  • 项目类别:
    Small Business Research Initiative
Developing Latent Hierarchical Network Models for Cross-Cultural Comparisons of Social and Economic Inequality
开发潜在的分层网络模型以进行社会和经济不平等的跨文化比较
  • 批准号:
    ES/V006495/1
  • 财政年份:
    2021
  • 资助金额:
    $ 31.4万
  • 项目类别:
    Research Grant
Model selection for Bayesian sparse estimation in hierarchical models
分层模型中贝叶斯稀疏估计的模型选择
  • 批准号:
    19K20363
  • 财政年份:
    2019
  • 资助金额:
    $ 31.4万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Assessment on climate impacts of short-lived climate forcers by composition and region with hierarchical numerical models
利用分层数值模型按成分和区域评估短期气候驱动力的气候影响
  • 批准号:
    19H05669
  • 财政年份:
    2019
  • 资助金额:
    $ 31.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了