CAREER: Tissue Microstructure Characterization through Exchange Mapping with Magnetic Resonance Fingerprinting

职业:通过磁共振指纹图谱交换映射来表征组织微观结构

基本信息

项目摘要

PI: Seiberlich, Nicole E.Proposal Number: 1553441 Tissue microstructure properties have been shown to change in the presence of disease, but these properties are difficult to measure quickly and accurately in vivo. The goal of this project is to develop and test a new technique, known as MRF-X, to probe in vivo tissue microstructure by using standard Magnetic Resonance Imaging (MRI) scanners to collect data in a new way. After optimizing the MRF-X method, the properties of both skeletal muscle and brain tissue will be measured, and differences between healthy and abnormal tissue quantified. This technique will enable researchers to study how diseases progress as well as allow physicians to examine tissue microstructure to better diagnose disease in their patients. The goal of this five-year project is to develop, validate, and deploy novel techniques for in vivo tissue microstructure characterization. These tissue microstructure measurements will be performed by collecting Magnetic Resonance (MR) imaging data that have been encoded to contain information about multiple tissue properties simultaneously in a manner similar to the recently introduced MR Fingerprinting technique. By optimizing the MR pulse sequence to be sensitive to variations between tissue compartments, it will be possible to collect information about microstructure which cannot currently be measured directly in vivo, including water exchange rates between tissue compartments and intracellular/extracellular volume fractions. The specific objectives of the proposal are to: 1) Develop a technique (MRF-X) for rapid and robust in vivo quantification of volume fractions and exchange properties, 2) Characterize and validate water exchange rates and volume fraction in healthy skeletal muscle and brain tissue, 3) Explore the use of water exchange as a biomarker for disease in the brain by comparing properties of normal brain tissue and multiple sclerosis (MS) lesions, and 4) Develop formal course work and laboratory experiences linking signal processing and medical imaging for undergraduate and graduate students, introduce K-12 students to biomedical imaging and engineering, and encourage women and underrepresented minorities to pursue science and engineering. The proposed research plan involves the development of new imaging techniques with the goal of addressing fundamental questions about the nature of interactions between tissue compartments and how they are modified under pathological conditions. Using MRF-X, it will be possible to explore tissue structure and function in healthy living tissue, and also to use these new biomarkers to aid in the understanding and diagnosis of disease. The development of a robust and rapid technique for in vivo tissue microstructure characterization will ensure that the technique is immediately translatable for clinical use, potentially leading to earlier and more accurate diagnosis of disease. Moreover, it will be possible to probe the underlying mechanisms of various diseases, including but not limited to Alzheimer?s disease and MS, using MRF-X. The education and mentorship of K-12, undergraduate, and graduate students will be integrated into the research to engage students, especially women and underrepresented minorities, in biomedical imaging.This award was made by the Biomedical Engineering program of CBET was co-funded by the Mathematical Biology program of the Division of Mathematical Sciences.
PI:Seiberlich,Nicole E.Proposal Number:已有1553441个组织的微观结构属性被证明在疾病存在的情况下会发生变化,但这些属性很难在体内快速准确地测量。该项目的目标是开发和测试一种名为MRF-X的新技术,通过使用标准磁共振成像(MRI)扫描仪以一种新的方式收集数据来探测活体组织的微结构。在优化了MRF-X方法后,将同时测量骨骼肌和脑组织的性质,并量化健康和异常组织之间的差异。这项技术将使研究人员能够研究疾病是如何发展的,并允许医生检查组织微结构,以更好地诊断患者的疾病。这个为期五年的项目的目标是开发、验证和部署体内组织微结构表征的新技术。这些组织微结构测量将通过收集磁共振(MR)成像数据来执行,这些数据已被编码为以类似于最近引入的MR指纹技术的方式同时包含关于多个组织属性的信息。通过优化MR脉冲序列以对组织间的变化敏感,将有可能收集关于微结构的信息,这些信息目前无法在体内直接测量,包括组织间的水交换率和细胞内/细胞外体积分数。建议的具体目标是:1)开发一种技术(MRF-X),用于快速和可靠地在体内量化体积分数和交换特性;2)表征和验证健康骨骼肌和脑组织中的水交换率和体积分数;3)通过比较正常脑组织和多发性硬化症(MS)病变的特性,探索将水交换作为脑内疾病的生物标志物;以及4)为本科生和研究生开发将信号处理与医学成像联系起来的正式课程工作和实验室经验,让K-12学生接触生物医学成像与工程,并鼓励女性和未被充分代表的少数族裔攻读理科和工程学。拟议的研究计划涉及开发新的成像技术,目标是解决关于组织间相互作用的性质以及在病理条件下如何修改这些组织间的基本问题。使用MRF-X,将有可能探索健康活组织中的组织结构和功能,并使用这些新的生物标记物来帮助理解和诊断疾病。开发一种强大而快速的体内组织微结构表征技术将确保该技术立即可转化为临床使用,有可能导致对疾病的更早和更准确的诊断。此外,使用MRF-X还可以探索各种疾病的潜在机制,包括但不限于阿尔茨海默病、S病和多发性硬化症。K-12、本科生和研究生的教育和指导将被整合到研究中,以吸引学生,特别是女性和未被充分代表的少数民族,参与生物医学成像。该奖项由CBET的生物医学工程项目颁发,由数学科学部的数学生物学项目共同资助。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicole Seiberlich其他文献

ECMR 1-21 - Tr-resolved Real-time Low-field Cardiac MR Using Hermitian Motion Corrected Reconstructions
ECMR 1-21 - 使用厄米运动校正重建的经分辨实时低场心脏磁共振成像
  • DOI:
    10.1016/j.jocmr.2024.101019
  • 发表时间:
    2024-03-01
  • 期刊:
  • 影响因子:
    6.100
  • 作者:
    Gastao Lima Da Cruz;Jesse Hamilton;Evan Cummings;Vikas Gulani;Nicole Seiberlich
  • 通讯作者:
    Nicole Seiberlich
DYNAMIC CARDIAC MAGNETIC RESONANCE FINGERPRINTING: PHANTOM VALIDATION AND FIRST APPLICATION DURING VASOACTIVE BREATHING MANOEUVRES
  • DOI:
    10.1016/s0735-1097(19)32068-6
  • 发表时间:
    2019-03-12
  • 期刊:
  • 影响因子:
  • 作者:
    Luuk Hopman;Elizabeth Hillier;Yuchi Liu;Jesse Hamilton;Nicole Seiberlich;Matthias Friedrich
  • 通讯作者:
    Matthias Friedrich
Cardiac MR fingerprinting for T1 and T2 mapping in four heartbeats
  • DOI:
    10.1186/1532-429x-18-s1-w1
  • 发表时间:
    2016-01-27
  • 期刊:
  • 影响因子:
  • 作者:
    Jesse I Hamilton;Yun Jiang;Dan Ma;Bhairav B Mehta;Wei-Ching Lo;Yong Chen;Mark A Griswold;Nicole Seiberlich
  • 通讯作者:
    Nicole Seiberlich
The future of cardiovascular magnetic resonance: All-in-one vs. real-time (Part 1)
心血管磁共振的未来:一体化与实时(第 1 部分)
  • DOI:
    10.1016/j.jocmr.2024.100997
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
    6.100
  • 作者:
    Anthony G. Christodoulou;Gastao Cruz;Ayda Arami;Sebastian Weingärtner;Jessica Artico;Dana Peters;Nicole Seiberlich
  • 通讯作者:
    Nicole Seiberlich
Cardiac MRF T1, T2, and M0 mapping at 0.55T with a Low-rank deep image prior reconstruction
在 0.55T 下使用低秩深度图像先验重建的心脏 MRF T1、T2 和 M0 映射
  • DOI:
    10.1016/j.jocmr.2024.101548
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    6.100
  • 作者:
    Zhongnan Liu;lmran Rashid;Prachi Agarwal;Nicole Seiberlich;Liyue Shen;Jesse Hamilton
  • 通讯作者:
    Jesse Hamilton

Nicole Seiberlich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicole Seiberlich', 18)}}的其他基金

CAREER: Tissue Microstructure Characterization through Exchange Mapping with Magnetic Resonance Fingerprinting
职业:通过磁共振指纹图谱交换映射来表征组织微观结构
  • 批准号:
    1553441
  • 财政年份:
    2016
  • 资助金额:
    $ 30.58万
  • 项目类别:
    Standard Grant

相似海外基金

Non-invasive characterisation of tissue microstructure from MRI using Deep Learning: applications to brain cancer
使用深度学习对 MRI 组织微观结构进行非侵入性表征:在脑癌中的应用
  • 批准号:
    2882279
  • 财政年份:
    2023
  • 资助金额:
    $ 30.58万
  • 项目类别:
    Studentship
Enabling clinical tissue microstructure imaging as a diagnostic tool in wide-bore 3T MRI
将临床组织微观结构成像作为大口径 3T MRI 的诊断工具
  • 批准号:
    10640750
  • 财政年份:
    2023
  • 资助金额:
    $ 30.58万
  • 项目类别:
2023 Tissue Microstructure Imaging Gordon Research Conference and Gordon Research Seminar
2023组织微结构成像戈登研究会议暨戈登研究研讨会
  • 批准号:
    10753939
  • 财政年份:
    2023
  • 资助金额:
    $ 30.58万
  • 项目类别:
Developing a Quantitative Diffusion Magnetic Resonance Imaging Protocol to characterize cellular death and tissue microstructure
开发定量扩散磁共振成像方案来表征细胞死亡和组织微观结构
  • 批准号:
    546780-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 30.58万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Probing Brain Tissue Microstructure with Magnetic Resonance Imaging through Bayesian Learning of Signal Dynamics
通过信号动力学的贝叶斯学习,利用磁共振成像探测脑组织微观结构
  • 批准号:
    547365-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 30.58万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Brain temperature and tissue microstructure in treatment-resistant epilepsy
难治性癫痫的脑温度和组织微观结构
  • 批准号:
    10536339
  • 财政年份:
    2022
  • 资助金额:
    $ 30.58万
  • 项目类别:
Brain temperature and tissue microstructure in treatment-resistant epilepsy
难治性癫痫的脑温度和组织微观结构
  • 批准号:
    10671484
  • 财政年份:
    2022
  • 资助金额:
    $ 30.58万
  • 项目类别:
Advanced Quantitative Magnetic Properties Mapping of Tissue Microstructure
组织微观结构的高级定量磁特性图
  • 批准号:
    RGPIN-2018-05047
  • 财政年份:
    2022
  • 资助金额:
    $ 30.58万
  • 项目类别:
    Discovery Grants Program - Individual
Augmented serial blockface histology: Toward a better understanding of 3D tissue microstructure
增强串行块面组织学:更好地理解 3D 组织微观结构
  • 批准号:
    RGPIN-2020-06109
  • 财政年份:
    2022
  • 资助金额:
    $ 30.58万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Quantitative Magnetic Properties Mapping of Tissue Microstructure
组织微观结构的高级定量磁特性图
  • 批准号:
    RGPIN-2018-05047
  • 财政年份:
    2021
  • 资助金额:
    $ 30.58万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了