Enabling clinical tissue microstructure imaging as a diagnostic tool in wide-bore 3T MRI

将临床组织微观结构成像作为大口径 3T MRI 的诊断工具

基本信息

  • 批准号:
    10640750
  • 负责人:
  • 金额:
    $ 0.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2023-10-02
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT Definitive characterization of cytoarchitecture and its alternation is key to clinical diagnosis and patient management in disease, including cancer. Current standard-of-care of such microstructure characterization is based primarily on histopathological assessment via biopsy sampling of suspected lesions. However, invasive biopsy procedures carry burdens of procedure complexity, sampling errors, and complications. Thus, it is desirable to have a non-invasive, high-sensitivity, high-specificity imaging tool that accurately assesses tumor microstructures that are comparable to that obtained from biopsy/histopathology. This will have the clinically significant result of reducing unnecessary biopsies at the minimum, and perhaps reduce the overall number of biopsy procedures and repeat biopsies. Furthermore, this will significantly improve the precision of biopsy to sample clinically significant cancers and regions most relevant to cancer prognosis. We propose to apply advanced diffusion MRI (dMRI), including novel oscillating gradient spin echo (OGSE) diffusion encoding, for tumor microstructure imaging and the pilot application will be to improve characterization of the epithelium, stroma, and lumen volume fractions which are highly correlated to prostate cancer grades. OGSE dMRI has been attempted in clinical whole-body MRI but the technique has had only modest success due to the limited gradient performance of whole-body MRI scanners. The gradient amplitude and slew rate of existing clinical whole-body 3.0T MRI scanners are often constrained by peak power of the gradient driver. Many clinical 70- cm wide-bore MRI systems operate at 1 MVA peak power, while some high-end systems increase the peak power to 2-2.7 MVA. However, the 2-3X higher peak power substantially increases the overall cost of MRI systems and requires major increases to the hospital's electrical service and cooling infrastructure to accommodate increased electrical power and thermal loads. Consequently, such upgrades become cost prohibitive and are impractical for wide adoption. Our technical solution is to build a new 4 MVA silicon carbide (SiC) semiconductor gradient driver which replaces a conventional silicon 1 MVA or 2 MVA gradient driver in clinical 3.0T wide-bore MRI scanners without requiring any changes to facility infrastructure. We have assembled a diverse, multi-disciplinary team from GE Research, Memorial Sloan Kettering Cancer Center, and Stanford University to develop MRI tools and methods to address clinical needs of non-invasive tumor microstructure imaging to solve clinically significant problems in cancer. We will demonstrate tumor microstructure imaging enabled by higher gradient amplitude and slew rate can provide clinical diagnostic information on tumor characterization comparable to that obtained from biopsy and move closer to the goal of reducing unnecessary biopsies. We will demonstrate the clinical significance in prostate cancer, as it is the second leading cause of death in men. It is applicable to other cancers and a broad range of clinical applications where non-invasive tumor microstructure characterization will significantly improve patient management.
项目总结/摘要 细胞结构及其改变的连续表征是临床诊断和患者治疗的关键 疾病管理,包括癌症。这种微结构表征的当前护理标准是 主要基于通过可疑病变的活检取样进行的组织病理学评估。然而,侵入性 活组织检查过程具有过程复杂性、取样误差和并发症的负担。照经上所 期望具有准确评估肿瘤的非侵入性、高灵敏度、高特异性成像工具, 显微结构与从活检/组织病理学获得的显微结构相当。这将使临床上 最大限度地减少不必要的活检的显著结果,并可能减少 活检程序和重复活检。此外,这将显著提高活检的精确度, 对临床上显著的癌症和与癌症预后最相关的区域进行采样。我们建议申请 高级弥散MRI(dMRI),包括新型振荡梯度自旋回波(OGSE)弥散编码, 肿瘤微结构成像和试验性应用将改善上皮的表征, 基质和管腔体积分数,它们与前列腺癌等级高度相关。OGSE dMRI具有 在临床全身MRI中进行了尝试,但由于有限的 全身MRI扫描仪的梯度性能。现有临床应用的梯度振幅和转换速率 全身3.0T MRI扫描仪通常受到梯度驱动器峰值功率的限制。临床70- cm宽孔MRI系统在1 MVA峰值功率下工作,而一些高端系统会增加峰值功率。 功率为2 - 2.7 MVA。然而,2 - 3倍的高峰值功率实质上增加了MRI的总成本 系统,并需要大幅增加医院的电气服务和冷却基础设施, 适应增加的电力和热负荷。因此,这种升级成为成本 这是禁止的,并且对于广泛采用是不切实际的。我们的技术解决方案是建立一个新的4 MVA硅 碳化物(SiC)半导体梯度驱动器,其替代常规硅1MVA或2MVA梯度 临床3.0 T宽孔MRI扫描仪中的驱动程序,无需对设施基础设施进行任何更改。我们 已经组建了一个多元化的多学科团队,来自通用电气研究院,纪念斯隆凯特琳癌症中心, 与斯坦福大学合作开发MRI工具和方法,以满足非侵入性肿瘤的临床需求 显微结构成像,以解决癌症的临床重要问题。我们将展示肿瘤 通过更高的梯度幅度和转换速率实现的微结构成像可以提供临床诊断 肿瘤表征的信息与活检获得的信息相当,更接近于 减少不必要的活检。我们将证明前列腺癌的临床意义,因为它是 男性第二大死因它适用于其他癌症和广泛的临床应用 其中非侵入性肿瘤微结构表征将显著改善患者管理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Oguz Akin其他文献

Oguz Akin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Oguz Akin', 18)}}的其他基金

Rapid motion-robust quantitative DCE-MRI for the assessment of gynecologic cancers
用于评估妇科癌症的快速运动稳健定量 DCE-MRI
  • 批准号:
    10665647
  • 财政年份:
    2020
  • 资助金额:
    $ 0.32万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 0.32万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 0.32万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 0.32万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了