Reconfigurable Active Matter

可重构活性物质

基本信息

  • 批准号:
    2003444
  • 负责人:
  • 金额:
    $ 33.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThis award supports theoretical, computational, and data-intensive research and education and education that focuses on the design of reconfigurable active materials. When one thinks about molecules or nanoparticles in a medium, very small objects that aimlessly move and vibrate come to mind. Over the past decade, it has been discovered that it is possible to chemically alter the surface of nanoparticles so that they can utilize chemical energy in their surroundings, and they act like microscopic engines. Thus powered, they can run through a medium like bacteria at very high speeds, and in a controllable manner. This breakthrough resulted in the emergence of a new field of research that is today called active matter and includes the study of both man-made and biological microscopic systems. Because of the direct analogy with biological systems, groups of activated nanoparticles are often referred to as synthetic "living" systems, and their collective behavior is indeed reminiscent of that exhibited by swarming bacteria or flocks of birds. One of the most appealing features of these nanoparticles is that they can be made into arbitrarily complex shapes, and with a wide range of mutual interactions and speeds that can be turned on and off by exposing them to blue light. The idea of this project is to use a combination of theoretical and cutting-edge numerical and data-science strategies, including machine learning, to study the properties of assemblies of active particles. The goal is to design how these particles should be put together or linked to each other so that they can form functional microscopic objects. So, the PI aims at studying how to create microscopic “machines” that can not only quickly move through a medium, but also acquire specific shapes, and, like proteins, change their shape over time in a controllable fashion. This serves to define the term "reconfigurable active materials". If successful, this project will help enable the development of robust strategies to design the next generation of smart materials built from microscopic active machines that are put together by spontaneous assembly of active nanoparticles. The applications of reconfigurable active materials in our daily life are countless, and cover areas ranging from stimuli-responsive materials, or sensors, to tissue repair and wound healing devices. More generally, they may open new opportunities in the field of nanomedicine. This project includes educational activities, including training undergraduate and graduate students, mentoring postdoctoral research fellows, and collaboration with on-campus organizations dedicated to the advancement of women and other groups that are underrepresented in science. TECHNICAL SUMMARYThis award supports theoretical, computational, and data-intensive research, and education with the aim of designing reconfigurable active assemblies from self-propelled nanoparticles. Characteristic of active systems is the out-of-equilibrium nature of its constituent parts which results in a phenomenological complexity that is extraordinary and has no equivalent in the realm of equilibrium thermodynamics. The study of the collective behavior of self-propelled particles, one of the simplest realizations of an active system, has been at the forefront of recent theoretical efforts. Ideas, and theoretical frameworks that have been developed to study these synthetic units have found fertile ground in several biological systems which are also inherently out of equilibrium, or occur in an environment where significant active fluctuations can occur. The PI plans to use a combination of theoretical approaches and numerical simulations to develop rational design strategies to engineer reconfigurable active materials based on the controlled assembly of self-propelled particles. This will be achieved through investigating the role that hydrodynamic interactions can play in how active agents interact with each other and behave when near surfaces and colloidal cages, or in confining media, and harnessing it to design reconfigurable active clusters. Inspired by recent experiments on 4D printing, the PI will also explore an alternative path towards structure formation and active reconfigurability that does not rely on self-assembly, but on the folding dynamics of linearly connected active colloidal swimmers. The coupling between active and elastic forces developing within a linearly, or two-dimensionally, constrained set of active particles provides untapped potential towards the goal of reconfigurability without self-assembly, and leads to intriguing analogies with protein folding design and the physics of DNA origami. The PI anticipates that the outcomes of this project will help advance out-of-equilibrium statistical mechanics and provide insights into design strategies for bottom-up assembly of active reconfigurable structures. The tools and theoretical approaches that the PI will develop in this research activity should be easily applicable or extended to other active systems, and may have important implications for biological problems that rely on similar physical mechanisms, such as tissue repair and wound healing, and in nanomedicine. This project contributes to the education of undergraduate and graduate students. An outreach plan in collaboration with the on-campus organization Women in Science at Columbia, whose efforts are dedicated to the advancement of women and underrepresented populations in science, technology, engineering, and mathematics is currently underway, and will be continued and extended.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结该奖项支持理论、计算和数据密集型研究以及专注于可重新配置活性材料设计的教育和教育。当人们想到介质中的分子或纳米颗粒时,脑海中就会浮现出漫无目的地运动和振动的非常小的物体。在过去的十年里,人们发现有可能对纳米颗粒的表面进行化学改变,以便它们能够利用周围的化学能,并且它们的行为就像微型引擎一样。在这样的动力下,它们可以以极高的速度在细菌类介质中以可控的方式运行。这一突破导致了一个新的研究领域的出现,这一领域今天被称为活性物质,包括对人造和生物微观系统的研究。由于与生物系统有直接的相似之处,一组被激活的纳米颗粒通常被称为合成的“活”系统,它们的集体行为确实让人想起成群的细菌或鸟群所表现出的行为。这些纳米粒子最吸引人的特征之一是,它们可以被制成任意复杂的形状,并且具有广泛的相互作用和速度,可以通过将它们暴露在蓝光下来开启和关闭。这个项目的想法是使用理论和尖端的数值和数据科学策略的组合,包括机器学习,来研究活性粒子集合的性质。其目标是设计如何将这些粒子放在一起或相互连接,以便它们能够形成具有功能的微观物体。因此,PI的目标是研究如何创造微观的“机器”,这种机器不仅可以在介质中快速移动,还可以获得特定的形状,并像蛋白质一样,随着时间的推移以可控的方式改变形状。这用于定义术语“可重新配置的活性材料”。如果成功,该项目将有助于开发强大的战略,以设计下一代智能材料,这些材料由微型活性机器通过活性纳米颗粒的自发组装组装而成。可重构活性材料在我们的日常生活中的应用数不胜数,涵盖了从刺激响应材料或传感器到组织修复和伤口愈合设备的各个领域。更广泛地说,它们可能会在纳米医学领域开辟新的机会。该项目包括教育活动,包括培训本科生和研究生,指导博士后研究员,以及与致力于提高妇女地位的校园组织和其他在科学领域代表性不足的群体合作。技术总结该奖项支持理论、计算和数据密集型研究和教育,目的是利用自推进纳米颗粒设计可重新配置的有源组件。活动系统的特征是其组成部分的非平衡性质,这导致了现象学上的复杂性是非同寻常的,在平衡热力学领域中没有对等的东西。对自推进粒子集体行为的研究是主动系统最简单的实现之一,一直处于最近理论工作的前沿。为研究这些合成单位而开发的思想和理论框架在几个生物系统中找到了肥沃的土壤,这些系统也天生就不平衡,或者发生在可能发生显著活跃波动的环境中。PI计划使用理论方法和数值模拟相结合的方法来开发合理的设计策略,以设计基于自推进颗粒的受控组装的可重构活性材料。这将通过研究流体动力相互作用在接近表面和胶体笼子时活性物质如何相互作用和行为中所起的作用,或在限制介质中发挥作用,并利用它来设计可重新配置的活性簇合物。受最近的4D打印实验的启发,PI还将探索一种不依赖于自组装,而是依赖于线性连接的主动胶体游泳者的折叠动力学的结构形成和主动可重构性的替代路径。在一组线性或二维受限的活性粒子中发展的活性和弹性力之间的耦合提供了朝向无需自组装的可重构目标的未开发潜力,并导致了与蛋白质折叠设计和DNA折纸物理学的有趣类比。PI预计,该项目的成果将有助于推进非平衡统计机制,并为自下而上组装主动可重构结构的设计策略提供见解。PI将在这一研究活动中开发的工具和理论方法应该很容易应用或扩展到其他活性系统,并可能对依赖于类似物理机制的生物学问题,如组织修复和伤口愈合,以及纳米医学具有重要意义。该项目为本科生和研究生的培养做出了贡献。与哥伦比亚大学科学女性校园组织合作的一项外展计划目前正在进行中,该计划致力于提高女性和在科学、技术、工程和数学领域未被充分代表的人群的地位,并将继续和扩大这一计划。该奖项反映了NSF的法定使命,并已通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effective forces between active polymers
活性聚合物之间的有效力
  • DOI:
    10.1103/physreve.105.034503
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Gandikota, M. C.;Cacciuto, A.
  • 通讯作者:
    Cacciuto, A.
The crumpling transition of active tethered membranes
活性束缚膜的皱缩转变
  • DOI:
    10.1039/d3sm00403a
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Gandikota, M. C.;Cacciuto, A.
  • 通讯作者:
    Cacciuto, A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Angelo Cacciuto其他文献

Angelo Cacciuto的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Angelo Cacciuto', 18)}}的其他基金

RHEOLOGY, ENTROPY PRODUCTION AND RATCHETING OF DEFORMABLE ACTIVE SYSTEMS
可变形主动系统的流变学、熵产生和棘轮
  • 批准号:
    2321925
  • 财政年份:
    2024
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Continuing Grant
TOWARDS SELF-ASSEMBLYING ACTIVE MICRO-STRUCTURES
迈向自组装活性微结构
  • 批准号:
    1703873
  • 财政年份:
    2017
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Continuing Grant
SELF-ASSEMBLY OF ACTIVE NANOPARTICLES
活性纳米颗粒的自组装
  • 批准号:
    1408259
  • 财政年份:
    2014
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Continuing Grant
CAREER: Self-Assembly in Two and Three Dimensions: from Crystal to Surface Design and Back
职业:二维和三维自组装:从晶体到表面设计再到背面
  • 批准号:
    0846426
  • 财政年份:
    2009
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Standard Grant

相似国自然基金

光—电驱动下的AIE-active手性高分子CPL液晶器件研究
  • 批准号:
    92156014
  • 批准年份:
    2021
  • 资助金额:
    70.00 万元
  • 项目类别:
    国际(地区)合作与交流项目
光-电驱动下的AIE-active手性高分子CPL液晶器件研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    70 万元
  • 项目类别:

相似海外基金

CAREER: Self-organization and shape change in elastic active matter
职业:弹性活性物质的自组织和形状变化
  • 批准号:
    2340632
  • 财政年份:
    2024
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Continuing Grant
ActBio: Exploiting the Parallels between Active Matter and Mechanobiology
ActBio:利用活性物质与机械生物学之间的相似之处
  • 批准号:
    EP/Y033981/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Research Grant
Thermodynamics of Growing Active and Living Matter
活性物质和生命物质生长的热力学
  • 批准号:
    EP/W027194/1
  • 财政年份:
    2023
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Fellowship
Exploration of novel non-Hermitian phenomena induced by active matter
探索活性物质引起的新颖非厄米现象
  • 批准号:
    23K13027
  • 财政年份:
    2023
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Squeezing active matter: Exploring low-dimensional properties in collective motion
挤压活性物质:探索集体运动的低维特性
  • 批准号:
    23H01141
  • 财政年份:
    2023
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: DMREF: Synthetic machines from feedback-controlled active matter
合作研究:DMREF:反馈控制活性物质的合成机器
  • 批准号:
    2324195
  • 财政年份:
    2023
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Standard Grant
Information flow and irreversibility in self-organised active matter
自组织活性物质中的信息流和不可逆性
  • 批准号:
    EP/X031926/1
  • 财政年份:
    2023
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Fellowship
Topology Driven Flows in Chromonic Liquid Crystals and Active Matter
有色液晶和活性物质中的拓扑驱动流动
  • 批准号:
    2223707
  • 财政年份:
    2023
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Synthetic machines from feedback-controlled active matter
合作研究:DMREF:反馈控制活性物质的合成机器
  • 批准号:
    2324194
  • 财政年份:
    2023
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Standard Grant
BRITE Pivot: An Integrated Theory of Continuum and Statistical Mechanics of Active Soft Matter
BRITE Pivot:活性软物质连续体和统计力学的综合理论
  • 批准号:
    2227556
  • 财政年份:
    2023
  • 资助金额:
    $ 33.9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了