Reconfigurable Active Matter
可重构活性物质
基本信息
- 批准号:2003444
- 负责人:
- 金额:$ 33.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis award supports theoretical, computational, and data-intensive research and education and education that focuses on the design of reconfigurable active materials. When one thinks about molecules or nanoparticles in a medium, very small objects that aimlessly move and vibrate come to mind. Over the past decade, it has been discovered that it is possible to chemically alter the surface of nanoparticles so that they can utilize chemical energy in their surroundings, and they act like microscopic engines. Thus powered, they can run through a medium like bacteria at very high speeds, and in a controllable manner. This breakthrough resulted in the emergence of a new field of research that is today called active matter and includes the study of both man-made and biological microscopic systems. Because of the direct analogy with biological systems, groups of activated nanoparticles are often referred to as synthetic "living" systems, and their collective behavior is indeed reminiscent of that exhibited by swarming bacteria or flocks of birds. One of the most appealing features of these nanoparticles is that they can be made into arbitrarily complex shapes, and with a wide range of mutual interactions and speeds that can be turned on and off by exposing them to blue light. The idea of this project is to use a combination of theoretical and cutting-edge numerical and data-science strategies, including machine learning, to study the properties of assemblies of active particles. The goal is to design how these particles should be put together or linked to each other so that they can form functional microscopic objects. So, the PI aims at studying how to create microscopic “machines” that can not only quickly move through a medium, but also acquire specific shapes, and, like proteins, change their shape over time in a controllable fashion. This serves to define the term "reconfigurable active materials". If successful, this project will help enable the development of robust strategies to design the next generation of smart materials built from microscopic active machines that are put together by spontaneous assembly of active nanoparticles. The applications of reconfigurable active materials in our daily life are countless, and cover areas ranging from stimuli-responsive materials, or sensors, to tissue repair and wound healing devices. More generally, they may open new opportunities in the field of nanomedicine. This project includes educational activities, including training undergraduate and graduate students, mentoring postdoctoral research fellows, and collaboration with on-campus organizations dedicated to the advancement of women and other groups that are underrepresented in science. TECHNICAL SUMMARYThis award supports theoretical, computational, and data-intensive research, and education with the aim of designing reconfigurable active assemblies from self-propelled nanoparticles. Characteristic of active systems is the out-of-equilibrium nature of its constituent parts which results in a phenomenological complexity that is extraordinary and has no equivalent in the realm of equilibrium thermodynamics. The study of the collective behavior of self-propelled particles, one of the simplest realizations of an active system, has been at the forefront of recent theoretical efforts. Ideas, and theoretical frameworks that have been developed to study these synthetic units have found fertile ground in several biological systems which are also inherently out of equilibrium, or occur in an environment where significant active fluctuations can occur. The PI plans to use a combination of theoretical approaches and numerical simulations to develop rational design strategies to engineer reconfigurable active materials based on the controlled assembly of self-propelled particles. This will be achieved through investigating the role that hydrodynamic interactions can play in how active agents interact with each other and behave when near surfaces and colloidal cages, or in confining media, and harnessing it to design reconfigurable active clusters. Inspired by recent experiments on 4D printing, the PI will also explore an alternative path towards structure formation and active reconfigurability that does not rely on self-assembly, but on the folding dynamics of linearly connected active colloidal swimmers. The coupling between active and elastic forces developing within a linearly, or two-dimensionally, constrained set of active particles provides untapped potential towards the goal of reconfigurability without self-assembly, and leads to intriguing analogies with protein folding design and the physics of DNA origami. The PI anticipates that the outcomes of this project will help advance out-of-equilibrium statistical mechanics and provide insights into design strategies for bottom-up assembly of active reconfigurable structures. The tools and theoretical approaches that the PI will develop in this research activity should be easily applicable or extended to other active systems, and may have important implications for biological problems that rely on similar physical mechanisms, such as tissue repair and wound healing, and in nanomedicine. This project contributes to the education of undergraduate and graduate students. An outreach plan in collaboration with the on-campus organization Women in Science at Columbia, whose efforts are dedicated to the advancement of women and underrepresented populations in science, technology, engineering, and mathematics is currently underway, and will be continued and extended.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要这一奖项支持理论,计算和数据密集型研究和教育,重点是可重新配置的活动材料的设计。当人们在介质中考虑分子或纳米颗粒时,就会想到非常小的物体。在过去的十年中,已经发现可以化学改变纳米颗粒的表面,以便它们可以在周围的环境中利用化学能,并且它们的作用像显微镜发动机。那是动力的,它们可以以非常高速的方式和受控的方式穿过细菌等介质。这一突破导致出现了一个新的研究领域,该领域如今被称为活跃物质,包括对人造和生物学微观系统的研究。由于与生物系统的直接类比,活化的纳米颗粒组通常被称为合成“生物”系统,它们的集体行为确实提醒着细菌或鸟类群。这些纳米颗粒的最吸引人的特征之一是可以将它们制成任意复杂的形状,并且可以通过将它们暴露于蓝光来打开和关闭的各种相互作用和速度。该项目的想法是结合包括机器学习在内的理论和尖端数值和数据科学策略的组合来研究活动粒子组装的特性。目标是设计应如何将这些粒子组合在一起或相互链接,以便它们可以形成功能性显微镜对象。因此,PI旨在研究如何创建微观的“机器”,该微观“机器”不仅可以快速地通过培养基移动,还可以获取特定的形状,并且像蛋白质一样,以受控的方式改变其形状。这可以定义“可重构活动材料”一词。如果成功的话,该项目将有助于制定强大的策略,以设计由微观活跃机器构建的下一代智能材料,这些机器由主动纳米颗粒的赞助组装组合在一起。可重新配置的活性材料在我们的日常生活中的应用是无数的,涵盖了从刺激反应材料或传感器到组织修复和伤口愈合装置的区域。更普遍地,他们可能会在纳米医学领域开放新的机会。该项目包括教育活动,包括培训本科生和研究生,心理的博士后研究研究员以及与致力于促进妇女和其他群体发展的校园内组织的合作。技术摘要这一奖项支持理论,计算和数据密集型研究以及教育,目的是设计自propelled纳米颗粒的可重构主动组件。活动系统的特征是其组成部分的不平衡性质,它导致现象学复杂性非同寻常,并且在平衡热力学领域中没有等效。对自螺旋体粒子的集体行为的研究,这是活跃系统的最简单实现之一,一直处于最近理论努力的最前沿。为研究这些合成单元而开发的思想和理论框架在几种生物系统中发现了肥沃的地面,这些生物系统也固有地不均衡,或者发生在可能发生重大主动波动的环境中。 PI计划使用理论方法和数值模拟的组合来制定合理的设计策略,以基于自propelled颗粒的受控组装来设计可重新配置的活动材料。这将通过调查流体动力相互作用可以在活性剂相互作用以及在表面和胶体笼子附近或限制培养基中发挥作用的作用来实现这一目标,并利用其设计可重新配置的活性群集。受到最新的4D打印实验的启发,PI还将探索不依赖自组装的结构形成和主动重构性的替代路径,而是基于线性连接的活动胶体游泳者的折叠动力学。在线性或二维上受约束的活动粒子集合中发育的主动力和弹性力之间的耦合为无开发的潜在的潜力提供了可重新配置的目标而无需自组装的目标,并导致与蛋白质折叠设计和DNA折叠物的物理学相似的类似物。 PI预计,该项目的结果将有助于提高平衡外统计力学,并提供有关自下而上组装主动可重构结构的设计策略的见解。 PI将在本研究活动中开发的工具和理论方法应易于适用或扩展到其他活动系统,并可能对依赖类似物理机制的生物学问题具有重要意义,例如组织修复和伤口愈合以及纳米医学。该项目有助于本科生和研究生的教育。与哥伦比亚科学科学妇女合作的宣传计划致力于目前正在进行并扩展科学,技术,工程和数学领域的妇女和人口不足的人群,并将继续扩展。这项奖项反映了NSF的法规和通过评估者的支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effective forces between active polymers
活性聚合物之间的有效力
- DOI:10.1103/physreve.105.034503
- 发表时间:2022
- 期刊:
- 影响因子:2.4
- 作者:Gandikota, M. C.;Cacciuto, A.
- 通讯作者:Cacciuto, A.
The crumpling transition of active tethered membranes
活性束缚膜的皱缩转变
- DOI:10.1039/d3sm00403a
- 发表时间:2023
- 期刊:
- 影响因子:3.4
- 作者:Gandikota, M. C.;Cacciuto, A.
- 通讯作者:Cacciuto, A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Angelo Cacciuto其他文献
Angelo Cacciuto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Angelo Cacciuto', 18)}}的其他基金
RHEOLOGY, ENTROPY PRODUCTION AND RATCHETING OF DEFORMABLE ACTIVE SYSTEMS
可变形主动系统的流变学、熵产生和棘轮
- 批准号:
2321925 - 财政年份:2024
- 资助金额:
$ 33.9万 - 项目类别:
Continuing Grant
TOWARDS SELF-ASSEMBLYING ACTIVE MICRO-STRUCTURES
迈向自组装活性微结构
- 批准号:
1703873 - 财政年份:2017
- 资助金额:
$ 33.9万 - 项目类别:
Continuing Grant
SELF-ASSEMBLY OF ACTIVE NANOPARTICLES
活性纳米颗粒的自组装
- 批准号:
1408259 - 财政年份:2014
- 资助金额:
$ 33.9万 - 项目类别:
Continuing Grant
CAREER: Self-Assembly in Two and Three Dimensions: from Crystal to Surface Design and Back
职业:二维和三维自组装:从晶体到表面设计再到背面
- 批准号:
0846426 - 财政年份:2009
- 资助金额:
$ 33.9万 - 项目类别:
Standard Grant
相似国自然基金
最优区分视角下内外部社会责任不一致的影响因素及其对企业的积极影响研究
- 批准号:72302070
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
内容创意平台中用户积极和消极反馈与创作者效能间关系的研究:基于认知和认同的双路径模型
- 批准号:72302250
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
数字经济时代股东积极主义的制度创新、治理效应与机制研究
- 批准号:72372103
- 批准年份:2023
- 资助金额:41.00 万元
- 项目类别:面上项目
基于大学生积极心理促进的校园恢复性环境循证建构研究
- 批准号:52378014
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
积极老龄化视域下养老财务计划决策的现实价值、影响机制与提升路径研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Self-organization and shape change in elastic active matter
职业:弹性活性物质的自组织和形状变化
- 批准号:
2340632 - 财政年份:2024
- 资助金额:
$ 33.9万 - 项目类别:
Continuing Grant
ActBio: Exploiting the Parallels between Active Matter and Mechanobiology
ActBio:利用活性物质与机械生物学之间的相似之处
- 批准号:
EP/Y033981/1 - 财政年份:2024
- 资助金额:
$ 33.9万 - 项目类别:
Research Grant
Thermodynamics of Growing Active and Living Matter
活性物质和生命物质生长的热力学
- 批准号:
EP/W027194/1 - 财政年份:2023
- 资助金额:
$ 33.9万 - 项目类别:
Fellowship
Exploration of novel non-Hermitian phenomena induced by active matter
探索活性物质引起的新颖非厄米现象
- 批准号:
23K13027 - 财政年份:2023
- 资助金额:
$ 33.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Examining the Persistence of Neurocognitive Benefits of Exercise
检查运动对神经认知的益处的持久性
- 批准号:
10719280 - 财政年份:2023
- 资助金额:
$ 33.9万 - 项目类别: