CAREER: Self-organization and shape change in elastic active matter
职业:弹性活性物质的自组织和形状变化
基本信息
- 批准号:2340632
- 负责人:
- 金额:$ 63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-05-15 至 2029-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis CAREER award supports theoretical and computational research to describe and understand the behavior of biologically inspired active solids. The models developed in this research are motivated by mechanical force-driven shape changes in living matter occurring in the cell cytoskeleton and multicellular tissues. Living matter utilizes chemically patterned mechanical forces to change shape in programmed and robust ways during crucial biological processes such as tissue development and cell migration. They are thus excellent examples of active matter which comprise microscopic components that consume energy to generate mechanical forces and motion. Unlike active fluids where constituent components move freely, biological materials typically contain connected networks of polymers that respond to mechanical force by deforming like elastic springs. Further, unlike ordinary solids that deform under externally applied forces to reach a well-defined minimal energy state, the force-generating units of active solids are embedded within the material itself and can be redistributed by the deformations that they themselves generate. These unique features enable active solids to autonomously generate patterns and shapes not found in ordinary solids under thermodynamic equilibrium. The PI and his research team will create theoretical and computational models of shape-changing active solids by combining mechanical and chemical factors. The general aim is to theoretically and computationally investigate the unique shape changes and self-organization phenomena that are possible in active solids. The results will be compared with experimental data on cytoskeletal materials and blood clots obtained from the PI’s collaborators. Our research will provide fundamental understanding of self-organization in cell biology and tissue morphogenesis. It may influence strategies in tissue engineering as well as the design of synthetic soft materials capable of autonomous shape change. Education and outreach activities are integrated with this research. These center on creating unique interdisciplinary learning opportunities involving computation for students at multiple levels. The PI will (1) deliver summer computational workshops to high school students; (2) develop computational modules for the introductory physics classes for life science majors as well as core physics classes; and (3) train beginning graduate students in scientific computing basics through a summer bridge module. These educational and outreach efforts will help recruit and train the future STEM workforce in the underserved San Joaquin Valley of California and beyond. TECHNICAL SUMMARYThis CAREER award supports the development of a physical theory of spontaneous shape change and self-organization in elastic active matter through biologically inspired mechano-chemical feedback. It also supports the PI’s educational initiative to train students at multiple levels in scientific computation through interdisciplinary biophysical models. Active matter refers to collections of entities that consume chemical energy and generate mechanical forces and motion. In contrast to active fluids that contain self-propelling particles, active solids comprise constituents connected via elastic spring-like constraints that exhibit deformations instead of large-scale flows in response to mechanical force. In living matter, these mechanical forces are generated by molecular motors whose activity is patterned by chemical signals. The research will be inspired by the inherently mechano-chemical nature of living matter occurring both in the cell cytoskeleton and in multicellular tissue. The PI and his research team will develop a class of models combining active mechanical forces, elastic deformation, orientational order and chemical gradients, and their mutual interactions, leading to spontaneous shape change and pattern formation. The team of the PI will focus on two nonlinear mechanical systems that respond sensitively to mechanical forces: thin elastic shells that undergo 3D shape changes by buckling because of their inherent geometric nonlinearity, and disordered fiber networks that exhibit complex nonlinear deformation modes. Complementary modeling strategies will be used, including continuum models amenable to theoretical analysis, as well as discrete network models for numeric computation. The research will reveal how elastic deformations of living matter contribute to 1) the regulation of chemical concentration by geometry and strain; 2) mutual elastic interactions between active units driving their self-organization dynamics into ordered states; 3) long-range orientational order and associated topological defects through deformation-induced alignment, and 4) complex 3D shapes arising through various buckling instabilities. The PI proposes an integrated educational plan involving computational training at multiple levels, from K-12 to undergraduate and graduate students. This will be delivered through 1) summer computational workshops and demonstrations designed for K-12 school students; 2) computational modules for the introductory physics classes for life science majors as well as core physics classes; and 3) training beginning graduate students through a summer bridge program on computational skills. These educational and outreach activities will contribute to the recruitment, retention, and training of students in STEM fields in the underserved San Joaquin Valley region of California. The research will provide training for a graduate student and a postdoc, and impact several fields including active matter physics, cell biology and tissue engineering, as well as bio-inspired soft materials design.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本职业奖支持理论和计算研究,以描述和理解生物激发活性固体的行为。本研究中开发的模型是由细胞骨架和多细胞组织中生物物质的机械力驱动的形状变化所驱动的。在关键的生物过程中,如组织发育和细胞迁移,生物物质利用化学模式的机械力以程序化和稳健的方式改变形状。因此,它们是活性物质的极好例子,这些活性物质由消耗能量产生机械力和运动的微观成分组成。与活性流体的组成成分自由移动不同,生物材料通常包含连接的聚合物网络,它们通过像弹性弹簧一样变形来响应机械力。此外,与普通固体在外力作用下变形以达到明确定义的最小能量状态不同,活性固体的力产生单元嵌入在材料本身中,并且可以通过它们自己产生的变形来重新分布。这些独特的特性使活性固体能够在热力学平衡下自主生成普通固体所没有的图案和形状。PI和他的研究团队将通过结合机械和化学因素来创建形状变化活性固体的理论和计算模型。总的目标是从理论上和计算上研究活性固体中可能出现的独特形状变化和自组织现象。该结果将与PI合作者获得的细胞骨架材料和血凝块的实验数据进行比较。我们的研究将为细胞生物学和组织形态发生中的自组织提供基本的理解。它可能会影响组织工程策略以及能够自主形状变化的合成软材料的设计。教育和外展活动与这项研究相结合。这些中心是为学生创造独特的跨学科学习机会,涉及多个层次的计算。PI将(1)为高中学生提供夏季计算讲习班;(2)为生命科学专业物理导论课和物理核心课开发计算模块;(3)通过暑期桥梁模块培养初学研究生科学计算基础知识。这些教育和推广工作将有助于在加州圣华金河谷及其他地区招募和培训未来的STEM劳动力。本职业奖支持通过生物启发的机械化学反馈,在弹性活性物质中自发形状变化和自组织的物理理论的发展。它还支持PI的教育计划,通过跨学科的生物物理模型在多个层次上训练学生进行科学计算。活性物质是指消耗化学能并产生机械力和运动的实体的集合。与含有自推进颗粒的活性流体相比,活性固体由通过弹性弹簧样约束连接的成分组成,这些成分表现出变形,而不是响应机械力的大规模流动。在有生命的物质中,这些机械力是由分子马达产生的,其活动是由化学信号决定的。这项研究将受到细胞骨架和多细胞组织中生物物质固有的机械化学性质的启发。PI和他的研究团队将开发一类结合主动机械力、弹性变形、取向顺序和化学梯度及其相互作用的模型,从而导致自发的形状变化和图案形成。PI团队将专注于两种对机械力敏感的非线性机械系统:由于其固有的几何非线性,薄弹性壳由于屈曲而发生3D形状变化,以及表现出复杂非线性变形模式的无序纤维网络。将使用互补的建模策略,包括适用于理论分析的连续体模型,以及用于数值计算的离散网络模型。该研究将揭示生物物质的弹性变形如何通过几何和应变来调节化学浓度;2)活动单元之间的相互弹性相互作用驱动其自组织动力学进入有序状态;3)变形诱导取向引起的长程取向顺序和相关的拓扑缺陷;4)各种屈曲不稳定引起的复杂三维形状。PI提出了一个综合的教育计划,包括从K-12到本科生和研究生的多个层次的计算训练。这将通过1)为K-12学校学生设计的夏季计算研讨会和演示来实现;2)生命科学专业物理导论课和物理核心课的计算模块;3)通过夏季桥梁项目训练初学研究生的计算技能。这些教育和推广活动将有助于在加州圣华金河谷地区招募、留住和培训STEM领域的学生。这项研究将为研究生和博士后提供培训,并影响几个领域,包括活性物质物理学、细胞生物学和组织工程,以及仿生软材料设计。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kinjal Dasbiswas其他文献
Elastic interactions compete with persistent cell motility to drive durotaxis
- DOI:
10.1016/j.bpj.2024.09.021 - 发表时间:
2024-11-05 - 期刊:
- 影响因子:
- 作者:
Subhaya Bose;Haiqin Wang;Xinpeng Xu;Arvind Gopinath;Kinjal Dasbiswas - 通讯作者:
Kinjal Dasbiswas
Mechanical Force-Driven Registry of Non-Muscle Myosin in Fibroblasts
- DOI:
10.1016/j.bpj.2019.11.2456 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Kinjal Dasbiswas;Shiqiong Hu;Alexander D. Bershadsky;Samuel Safran - 通讯作者:
Samuel Safran
Kinjal Dasbiswas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kinjal Dasbiswas', 18)}}的其他基金
ERI: Multi-Scale Modeling of Cell-Matrix Mechanical Interactions in Endothelial Cell Network Assembly
ERI:内皮细胞网络组装中细胞-基质机械相互作用的多尺度建模
- 批准号:
2138672 - 财政年份:2022
- 资助金额:
$ 63万 - 项目类别:
Standard Grant
相似国自然基金
Self-DNA介导的CD4+组织驻留记忆T细胞(Trm)分化异常在狼疮肾炎发病中的作用及机制研究
- 批准号:82371813
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于受体识别和转运整合的self-DNA诱导采后桃果实抗病反应的机理研究
- 批准号:32302161
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于广义测量的多体量子态self-test的实验研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Self-shrinkers的刚性及相关问题
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于Self-peptide和Fe5C2构建的高敏感MR分子探针对肿瘤血管的MR靶向成像研究
- 批准号:81501521
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
平均曲率流中非紧Self-shrinkers的结构
- 批准号:11301190
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
2维伪欧氏空间下平均曲率流中Self-shrinker问题的研究
- 批准号:11126152
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
晶态桥联聚倍半硅氧烷的自导向组装(self-directed assembly)及其发光性能
- 批准号:21171046
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
成束蛋白Fascin1在肺癌"self-seeding"过程中的作用及机制研究
- 批准号:81001041
- 批准年份:2010
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
工业用腈水合酶全新蛋白质翻译后调节体系self-subunit swapping的研究
- 批准号:31070711
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Self-Organization of Micro-Particles with Light and Sound
职业:利用光和声音自组织微粒
- 批准号:
2046261 - 财政年份:2021
- 资助金额:
$ 63万 - 项目类别:
Continuing Grant
CAREER: Accelerating natural self-organization and restoring coastal ecosystem services with reef-mimicking substrate arrays
职业:利用模仿珊瑚礁的基质阵列加速自然自组织并恢复沿海生态系统服务
- 批准号:
1652628 - 财政年份:2017
- 资助金额:
$ 63万 - 项目类别:
Continuing Grant
CAREER: Physical Aspects of Spindle Self-Organization
职业:主轴自组织的物理方面
- 批准号:
0847188 - 财政年份:2009
- 资助金额:
$ 63万 - 项目类别:
Standard Grant
CAREER: Self-organization mechanisms in Myxococcus xanthus swarms
职业:黄色粘球菌群的自组织机制
- 批准号:
0845919 - 财政年份:2009
- 资助金额:
$ 63万 - 项目类别:
Continuing Grant
Analysis of the process of self-organization of social competence and career development of IT engineers
IT工程师社会能力自组织过程与职业发展分析
- 批准号:
20530460 - 财政年份:2008
- 资助金额:
$ 63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Self-Organization Services and Application Support Constructs for Sensor Networks
职业:传感器网络的自组织服务和应用支持结构
- 批准号:
0448082 - 财政年份:2005
- 资助金额:
$ 63万 - 项目类别:
Continuing Grant
CAREER: Cooperative Communication Systems: Resource Allocation, Self-Organization, and Synchronization
职业:协作通信系统:资源分配、自组织和同步
- 批准号:
0447743 - 财政年份:2005
- 资助金额:
$ 63万 - 项目类别:
Continuing Grant
CAREER: Global Self-Organization of all Known Proteins - Toward a Complete Map of the Protein Space
职业:所有已知蛋白质的全局自组织 - 绘制蛋白质空间的完整地图
- 批准号:
0133311 - 财政年份:2002
- 资助金额:
$ 63万 - 项目类别:
Continuing Grant
CAREER: Ordered Nanoporous Semiconductors and Metals Synthesized by Combining Zintl Ion Chemistry with Inorganic/Organic Self-Organization
职业:Zintl 离子化学与无机/有机自组织相结合合成有序纳米多孔半导体和金属
- 批准号:
9985259 - 财政年份:2000
- 资助金额:
$ 63万 - 项目类别:
Continuing Grant
Career: Self-Organization of Amphiphilic Block Copolymers for the Preparation of Highly Ordered Materials: A Research and Education Program
职业:用于制备高度有序材料的两亲性嵌段共聚物的自组织:研究和教育计划
- 批准号:
9875848 - 财政年份:1999
- 资助金额:
$ 63万 - 项目类别:
Continuing Grant