Probing Ion Injection in Organic Electrochemical Transistors

探测有机电化学晶体管中的离子注入

基本信息

  • 批准号:
    2003456
  • 负责人:
  • 金额:
    $ 50.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2023-10-31
  • 项目状态:
    已结题

项目摘要

Plastics that can conduct both electrons and ions are important for numerous applications such as bioelectronic sensors that convert biological nerve impulses into signals readable by digital electronics, energy storage devices that can deliver high currents for short times, and next-generation computers that mimic the function of the brain. One of the factors limiting technological developments in these fields is limited understanding of how ions inject into and transport within these semiconducting plastics. This project addresses this question by analyzing polymers (plastics) at the nanometer scale using advanced microscopy techniques. These methods can determine where polymers are swelling from ion injection and can correlate that response with the chemical signature of the ion using infrared light, also at the nanoscale. The microscopic information is then compared to transistor measurements to gain a fundamental understanding of how the polymer processing and structure influences ion motion. The scientific knowledge from this project enables better design and processing/manufacturing of polymers for the applications noted above. The project additionally builds upon the track record of the principal investigator in education by enabling development of new outreach materials such as polymer electrochemistry kits that are suitable for integration into existing outreach programs and networks. The project also provides direct support for undergraduate research through continuation of the successful partnership with the Rainier Scholars organization to provide pathways to assist under-represented groups and first-generation college students succeed in the sciences. The scientific goal of this project is to gain a fundamental understanding of the structure/function relationships controlling ion injection in pi-conjugated polymers operating as mixed ionic/electronic conductors while using blended organic electrochemical transistors as an experimental testbed. These polymers and blends typically exhibit features on the scale of tens of nanometers, and therefore this project uses advanced scanning probe microscopy tools to investigate the ion transport process at the nanoscale. Conjugated polymers have emerged as promising electronic and photonic materials for transducing signals at the interface between the biological and digital environments, and the proposed project will explore fundamental structure/function properties of these materials relevant to these applications in a way that is distinct from other efforts through a combination of unique local and bulk methods. Specifically, the project will: 1) use a new method, photoinduced force microscopy (PiFM), to make nanoscale maps probing how local chemical structure and morphology combine to affect local ion injection; 2) apply electrochemical strain microscopy (ESM) to measure local swelling due to ion uptake in homopolymers, block copolymers, and blends; and, 3) do so while exploring new blend and composite architectures as a means to overcome the bottlenecks of existing materials performance. Notably, this project uses nanoscale infrared microscopy to probe blends of conducting polymers and ionic conductors to test the hypothesis that decoupling the high electronic mobility component and high ionic mobility component can enable improved electrochemical transistors. The principal investigator has shown in previous work that ion injection and electronic mobility are often anti-correlated in mixed conductors, which serves as a device bottleneck. These experiments yield a distinct set of measurements that enable multimodal analysis of the structure-function relationships underpinning ion injection. The project provides important insight into how mobility and volumetric capacitance in mixed ionic-electronic conductors are related, and whether it is possible to rationally improve conducting polymers and polymer blends design by focusing on how ions move into the polymer from the ground up.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可以同时进行电子和离子的塑料对于众多应用很重要,例如将生物神经冲动转换为可通过数字电子设备可读的信号,可以在短时间内提供高电流的能量存储设备的信号,以及模仿大脑功能的下一代计算机。限制这些领域技术发展的因素之一是对离子如何在这些半导体塑料中注入和运输的理解有限。该项目通过使用高级显微镜技术在纳米尺度上分析聚合物(塑料)来解决这个问题。这些方法可以确定聚合物从离子注射中膨胀的位置,并且可以使用红外光(也可以在纳米级)与离子的化学特征相关联。然后将微观信息与晶体管测量值进行比较,以获得对聚合物处理和结构如何影响离子运动的基本了解。该项目的科学知识可以为上述应用程序更好地设计和处理/制造聚合物。该项目还基于教育主要研究者的往绩,通过开发新的外展材料(例如聚合物电化学套件),这些材料适合集成到现有的外展计划和网络中。该项目还通过与雷尼尔学者组织(Rainier Scholars)组织成功合作,为本科研究提供直接支持,以提供帮助不足的群体和第一代大学生在科学领域取得成功的途径。该项目的科学目标是对控制与混合离子/电子导体的PI结合聚合物中控制离子注入的结构/功能关系有基本的了解,同时将混合有机电化学晶体管作为实验测试台。这些聚合物和混合物通常在数十纳米的尺度上表现出特征,因此该项目使用先进的扫描探针显微镜工具来研究纳米级的离子传输过程。共轭聚合物已成为有前途的电子和光子材料,用于在生物和数字环境之间的界面上传输信号,而拟议的项目将探索这些材料的基本结构/功能特性,以与这些应用相关的方式,以与其他局部局部和实体方法的组合不同。具体而言,该项目将:1)使用一种新方法,即光诱导的力显微镜(PIFM),以使纳米级图探测局部化学结构和形态如何结合起来影响局部离子注射; 2)应用电化学应变显微镜(ESM),以测量由于均聚物,阻断共聚物和混合物的离子摄取而引起的局部肿胀; 3)在探索新的混合和复合体系结构时这样做,以此来克服现有材料性能的瓶颈。值得注意的是,该项目使用纳米级红外显微镜来探测导电聚合物和离子导体的混合物,以测试将高电子迁移率分量和高离子迁移率分量与高离子迁移率分量解耦的假设可以启用改进的电化学跨晶体管。主要研究者在先前的工作中表明,在混合导体中,离子注射和电子迁移率通常是抗相关的,后者用作设备瓶颈。这些实验产生了一组独特的测量值,使得能够对基于离子注射的结构功能关系的多模式分析。该项目提供了有关混合离子电子导体中的活动能力和体积电容如何相关的重要见解,以及是否有可能通过关注离子从地面上转移到聚合物中的范围来进行理性的奖励,这表明NSF的法定任务和范围是在宽阔的范围内,是否有可能在理性地改善指导聚​​合物的范围。 标准。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Impact of varying side chain structure on organic electrochemical transistor performance: a series of oligoethylene glycol-substituted polythiophenes
不同侧链结构对有机电化学晶体管性能的影响:一系列低聚乙二醇取代的聚噻吩
  • DOI:
    10.1039/d2ta00683a
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Chen, Shinya E.;Flagg, Lucas Q.;Onorato, Jonathan W.;Richter, Lee J.;Guo, Jiajie;Luscombe, Christine K.;Ginger, David S.
  • 通讯作者:
    Ginger, David S.
Hydration of a Side-Chain-Free n-Type Semiconducting Ladder Polymer Driven by Electrochemical Doping
  • DOI:
    10.1021/jacs.2c11468
  • 发表时间:
    2023-01-11
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Guo, Jiajie;Flagg, Lucas Q.;Ginger, David S.
  • 通讯作者:
    Ginger, David S.
Nanowire Architectures Improve Ion Uptake Kinetics in Conjugated Polymer Electrochemical Transistors
  • DOI:
    10.1021/acsami.1c08176
  • 发表时间:
    2021-07-16
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Giridharagopal, Rajiv;Guo, Jiajie;Ginger, David S.
  • 通讯作者:
    Ginger, David S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Ginger其他文献

David Ginger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Ginger', 18)}}的其他基金

What Controls Kinetics in Organic Mixed Conductors for Neuromorphic Computing and Beyond?
用于神经形态计算及其他领域的有机混合导体的动力学控制是什么?
  • 批准号:
    2309577
  • 财政年份:
    2023
  • 资助金额:
    $ 50.56万
  • 项目类别:
    Standard Grant
STC: Center for Integration of Modern Optoelectronic Materials on Demand
STC:现代光电材料按需集成中心
  • 批准号:
    2019444
  • 财政年份:
    2021
  • 资助金额:
    $ 50.56万
  • 项目类别:
    Cooperative Agreement
EAGER: Type I: Data-Driven Analysis of Correlations between Chemical Structure and Electrical
EAGER:I 型:化学结构与电学之间相关性的数据驱动分析
  • 批准号:
    1842708
  • 财政年份:
    2018
  • 资助金额:
    $ 50.56万
  • 项目类别:
    Standard Grant
Probing Film Morphology and Ionic Transport in Organic Semiconductors
探测有机半导体中的薄膜形态和离子传输
  • 批准号:
    1607242
  • 财政年份:
    2016
  • 资助金额:
    $ 50.56万
  • 项目类别:
    Standard Grant
Collaborative Research: Chemical Control of Polymer/PbS Blends for PV Applications
合作研究:光伏应用聚合物/PbS 混合物的化学控制
  • 批准号:
    1437016
  • 财政年份:
    2014
  • 资助金额:
    $ 50.56万
  • 项目类别:
    Standard Grant
MRI: Development of a Scanning Probe Microscope for Resolving Fast Local Dynamics in Nanostructured Materials
MRI:开发扫描探针显微镜来解决纳米结构材料中的快速局部动力学
  • 批准号:
    1337173
  • 财政年份:
    2013
  • 资助金额:
    $ 50.56万
  • 项目类别:
    Standard Grant
Imaging Defect Dynamics in Organic Semiconductor Films
有机半导体薄膜中的缺陷动态成像
  • 批准号:
    1306079
  • 财政年份:
    2013
  • 资助金额:
    $ 50.56万
  • 项目类别:
    Standard Grant
The Role of Local Heterogeneity in Organic Semiconductor Performance
局部异质性在有机半导体性能中的作用
  • 批准号:
    1005504
  • 财政年份:
    2010
  • 资助金额:
    $ 50.56万
  • 项目类别:
    Continuing Grant
CAREER: Understanding Morphology-Property Correlations in Conjugated Polymer Blends with Nanoscale Optoelectronic Probes
职业:利用纳米级光电探针了解共轭聚合物共混物的形态-性能相关性
  • 批准号:
    0449422
  • 财政年份:
    2005
  • 资助金额:
    $ 50.56万
  • 项目类别:
    Continuing Grant
NER: Dip-Pen Nanolithographic Templates for Conjugated Polymer Photovoltaic Devices
NER:共轭聚合物光伏器件的浸笔纳米光刻模板
  • 批准号:
    0403446
  • 财政年份:
    2004
  • 资助金额:
    $ 50.56万
  • 项目类别:
    Standard Grant

相似国自然基金

可注射两性离子水凝胶吸附/粘附性的有效调控及其生物学效应研究
  • 批准号:
    52103159
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
可注射电活性聚离子复合水凝胶依次释放抗炎药与神经调节剂修复脊髓损伤
  • 批准号:
    51673187
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
纤维素材料离子液体增塑注射成形新工艺与机理
  • 批准号:
    51675199
  • 批准年份:
    2016
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
青天葵注射液调控内毒素诱导急性肺损伤大鼠肺泡液转运的机制研究
  • 批准号:
    81503511
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
高性能净尺寸透明氧化钇陶瓷材料的注射成型及放电等离子体烧结研究
  • 批准号:
    51502041
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

PIC simulation of lower hybrid wave under inhomogeneous magnetic field: energetic-ion injection model
非均匀磁场下混合波的PIC模拟:高能离子注入模型
  • 批准号:
    22KJ1887
  • 财政年份:
    2023
  • 资助金额:
    $ 50.56万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Nanoscale deterministic single ion implantation for semiconductor qubit formation
用于半导体量子位形成的纳米级确定性单离子注入
  • 批准号:
    22H03880
  • 财政年份:
    2022
  • 资助金额:
    $ 50.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Novel 5-HT7 Antagonists for the Treatment of Pruritus
用于治疗瘙痒的新型 5-HT7 拮抗剂
  • 批准号:
    10547410
  • 财政年份:
    2022
  • 资助金额:
    $ 50.56万
  • 项目类别:
Development of a New Injection Trap System for Mass Measurements of the Most Exotic Isotopes at the FRS Ion Catcher, GSI
开发新的注入阱系统,用于在 FRS 离子捕集器 (GSI) 上对最奇异的同位素进行质量测量
  • 批准号:
    2645161
  • 财政年份:
    2021
  • 资助金额:
    $ 50.56万
  • 项目类别:
    Studentship
Restoring Vision with High-Fidelity Nonsense Codon Correction
通过高保真无义密码子校正恢复视力
  • 批准号:
    10334544
  • 财政年份:
    2021
  • 资助金额:
    $ 50.56万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了