Geometric Representation Theory: A Double Conference

几何表示理论:双重会议

基本信息

  • 批准号:
    2003536
  • 负责人:
  • 金额:
    $ 1.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

The conference "Geometric Representation Theory" will take place June 22-26, 2020 and will have a novel format, in that it will be held simultaneously in two locations: at the Perimeter Institute in Waterloo, Canada and also the Max Planck Institute for Mathematics in Bonn, Germany. The conference will bring together a wide range of researchers in the field from across both continents and highlight a number of exciting directions in representation theory, an active area of research with deep connections to geometry, number theory and physics. The organizers have invited fifteen leaders in the field to give lectures that will be shown at both sites simultaneously, live on one continent and on the other by video conferencing. Due to the time difference, the morning in Europe and afternoon in North America are not suitable for shared talks, and during this time, there will be local talks given by junior researchers and time for discussion and collaboration. The double location format is designed to lower the travel costs and carbon footprint of the conference while still encouraging international collaboration. NSF funds will be used to support ten to fifteen researchers who are early-career or from groups underrepresented in the mathematical sciences to attend the conference at the North American site.The invited speakers represent a wide range of areas falling within the topic of geometric representation theory and the conference will aim to facilitate interaction between these groups and between the two locations. Talks will highlight a number of exciting directions including recent advances from interactions with physics, connections between the geometric and classical Langlands program, new homotopical methods, combinatorial representation theory and topology. A conference website can be found at the address: https://perimeterinstitute.ca/conferences/geometric-representation-theoryThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
会议“几何表示理论”将于2020年6月22日至26日举行,将有一个新颖的格式,因为它将同时在两个地点举行:在加拿大滑铁卢的圆周研究所和德国波恩的马克斯普朗克数学研究所。 该会议将汇集来自两大洲的广泛研究人员,并强调表示论中的一些令人兴奋的方向,这是一个与几何,数论和物理学有着深刻联系的活跃研究领域。组织者邀请了该领域的15位领导人发表演讲,这些演讲将同时在两个地点播放,在一个大陆直播,另一个大陆通过视频会议直播。由于时差的关系,欧洲的上午和北美的下午不适合进行分享讲座,在此期间,将有初级研究人员在当地进行讲座,并有时间进行讨论和合作。 双地点模式旨在降低会议的差旅成本和碳足迹,同时鼓励国际合作。 美国国家科学基金会的资金将用于支持10至15名研究人员谁是早期的职业生涯或从群体在数学科学中代表不足参加会议在北美网站。受邀发言人代表了广泛的领域属于主题的几何表示理论和会议将旨在促进这些群体之间的互动和两个地点之间。 讲座将突出一些令人兴奋的方向,包括与物理相互作用的最新进展,几何和经典朗兰兹程序之间的联系,新同伦方法,组合表示理论和拓扑结构。 会议网站可以在以下地址找到:https://perimeterinstitute.ca/conferences/geometric-representation-theoryThis奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carl Mautner其他文献

Carl Mautner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carl Mautner', 18)}}的其他基金

Categories of Sheaves in Representation Theory
表示论中滑轮的类别
  • 批准号:
    1802299
  • 财政年份:
    2018
  • 资助金额:
    $ 1.88万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1004464
  • 财政年份:
    2010
  • 资助金额:
    $ 1.88万
  • 项目类别:
    Fellowship Award

相似海外基金

Local Geometric Langlands Correspondence and Representation Theory
局部几何朗兰兹对应与表示理论
  • 批准号:
    2416129
  • 财政年份:
    2024
  • 资助金额:
    $ 1.88万
  • 项目类别:
    Standard Grant
Study of moduli spaces of vacua of supersymmetric gauge theories by geometric representation theory
用几何表示理论研究超对称规范理论真空模空间
  • 批准号:
    23K03067
  • 财政年份:
    2023
  • 资助金额:
    $ 1.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference: Geometric representation theory and moduli spaces
会议:几何表示理论和模空间
  • 批准号:
    2328483
  • 财政年份:
    2023
  • 资助金额:
    $ 1.88万
  • 项目类别:
    Standard Grant
Geometric representation theory and crystals
几何表示理论和晶体
  • 批准号:
    RGPIN-2018-04713
  • 财政年份:
    2022
  • 资助金额:
    $ 1.88万
  • 项目类别:
    Discovery Grants Program - Individual
Diagrammatic and geometric techniques in representation theory
表示论中的图解和几何技术
  • 批准号:
    RGPIN-2018-03974
  • 财政年份:
    2022
  • 资助金额:
    $ 1.88万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric representation theory and crystals
几何表示理论和晶体
  • 批准号:
    RGPIN-2018-04713
  • 财政年份:
    2022
  • 资助金额:
    $ 1.88万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric representation theory and crystals
几何表示理论和晶体
  • 批准号:
    522588-2018
  • 财政年份:
    2022
  • 资助金额:
    $ 1.88万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Modular representation theory, Hilbert modular forms and the geometric Breuil-Mézard conjecture.
模表示理论、希尔伯特模形式和几何布勒伊-梅扎德猜想。
  • 批准号:
    EP/W001683/1
  • 财政年份:
    2022
  • 资助金额:
    $ 1.88万
  • 项目类别:
    Fellowship
Geometric and category theoretic methods in representation theory
表示论中的几何和范畴论方法
  • 批准号:
    RGPIN-2017-03854
  • 财政年份:
    2021
  • 资助金额:
    $ 1.88万
  • 项目类别:
    Discovery Grants Program - Individual
Diagrammatic and geometric techniques in representation theory
表示论中的图解和几何技术
  • 批准号:
    RGPIN-2018-03974
  • 财政年份:
    2021
  • 资助金额:
    $ 1.88万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了