Categories of Sheaves in Representation Theory
表示论中滑轮的类别
基本信息
- 批准号:1802299
- 负责人:
- 金额:$ 16.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Representation theory is the study of symmetries in algebra. An understanding of symmetry allows us to reduce complicated problems to simpler ones. Algebra can be used to describe a wide range of phenomena and structures throughout mathematics and the real world, and consequently representation theory has many important applications. Sheaves are geometric objects that generalize the usual notion of functions and have proven to be extremely effective in advancing our understanding of representation theory. This research project aims to uncover finer information about sheaves and applications of this information to representation theory.Parity sheaves were introduced by the PI and his collaborators as a tool for studying the representation theory of reductive groups in positive characteristic. The study of parity sheaves has also suggested the existence of new structures in categories of perverse sheaves. The PI will explore these structures in some special, important, cases and their expected applications in a number of areas including the representations of Hecke algebras and modular representations of finite groups of Lie type. The geometric spaces to be studied are nilpotent cones and their generalizations for symmetric pairs and in gauge theory, as well as (generalized) flag varieties and toric varieties. The proposed methods include utilizing cohomological parity vanishing properties, nearby cycles and hyperbolic localization functors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
表示论是研究代数中的对称性。对对称性的理解使我们能够把复杂的问题简化为简单的问题。 代数可以用来描述贯穿数学和真实的世界的各种现象和结构,因此表示论有许多重要的应用。层是推广函数的通常概念的几何对象,并且已被证明在推进我们对表示论的理解方面非常有效。这个研究项目旨在揭示层的更精细的信息以及这些信息在表示论中的应用。宇称层是由PI及其合作者引入的,作为研究具有正特征的约化群的表示论的工具。 宇称层的研究也表明了反常层范畴中新结构的存在。 PI将在一些特殊的,重要的情况下探索这些结构,以及它们在许多领域的预期应用,包括Hecke代数的表示和Lie型有限群的模表示。要研究的几何空间是幂零锥及其对对称对和规范理论的推广,以及(广义)旗簇和环面簇。建议的方法包括利用上同调宇称消失属性,附近的循环和双曲本地化functors.This奖反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carl Mautner其他文献
Carl Mautner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carl Mautner', 18)}}的其他基金
Geometric Representation Theory: A Double Conference
几何表示理论:双重会议
- 批准号:
2003536 - 财政年份:2020
- 资助金额:
$ 16.71万 - 项目类别:
Standard Grant
相似海外基金
Representation theory of affine Lie algebras and enumerative geometry of sheaves on toric surfaces and threefolds
仿射李代数表示论与复曲面和三重滑轮的枚举几何
- 批准号:
567867-2022 - 财政年份:2022
- 资助金额:
$ 16.71万 - 项目类别:
Postdoctoral Fellowships
Geometric Methods in the Representation Theory of Affine Hecke Algebras, Finite Reductive Groups, and Character Sheaves
仿射 Hecke 代数、有限还原群和特征轮表示论中的几何方法
- 批准号:
1855773 - 财政年份:2019
- 资助金额:
$ 16.71万 - 项目类别:
Standard Grant
Microlocal Sheaves, Symplectic Geometry and Applications in Representation Theory
微局域滑轮、辛几何及其在表示论中的应用
- 批准号:
1854232 - 财政年份:2018
- 资助金额:
$ 16.71万 - 项目类别:
Standard Grant
Singularities and Sheaves in Symplectic Geometry and Geometric Representation Theory
辛几何和几何表示理论中的奇点和滑轮
- 批准号:
1802373 - 财政年份:2018
- 资助金额:
$ 16.71万 - 项目类别:
Continuing Grant
Microlocal Sheaves, Symplectic Geometry and Applications in Representation Theory
微局域滑轮、辛几何及其在表示论中的应用
- 批准号:
1710481 - 财政年份:2017
- 资助金额:
$ 16.71万 - 项目类别:
Standard Grant
Geometric Methods in the Representation Theory of Affine Hecke Algebras, Finite Reductive Groups, and Character Sheaves
仿射 Hecke 代数、有限还原群和特征轮表示论中的几何方法
- 批准号:
1566618 - 财政年份:2016
- 资助金额:
$ 16.71万 - 项目类别:
Continuing Grant
Microlocal Sheaves in Geometric Representation Theory
几何表示理论中的微局域滑轮
- 批准号:
1502125 - 财政年份:2015
- 资助金额:
$ 16.71万 - 项目类别:
Standard Grant
CAREER: Knot invariants, moduli spaces of sheaves and representation theory
职业:结不变量、滑轮模空间和表示论
- 批准号:
1352398 - 财政年份:2014
- 资助金额:
$ 16.71万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometric methods in the representation theory of affine Hecke algebras, finite reductive groups and character sheaves
数学科学:仿射 Hecke 代数、有限约简群和特征轮表示论中的几何方法
- 批准号:
1303060 - 财政年份:2013
- 资助金额:
$ 16.71万 - 项目类别:
Continuing Grant
Perverse Sheaves in Representation Theory
表示论中的反常滑轮
- 批准号:
0600909 - 财政年份:2006
- 资助金额:
$ 16.71万 - 项目类别:
Standard Grant