Increasing the Reductive Stability of Self-Assembled Monolayers on Metallic Surfaces to Enable Reductive Electrocatalysis

提高金属表面自组装单分子层的还原稳定性以实现还原电催化

基本信息

项目摘要

Professors Charles McCrory and James Penner-Hahn of the University of Michigan-Ann Arbor are supported by the Macromolecular, Supramolecular, and Nanochemistry Program of the NSF Division of Chemistry to study the sequence of events (mechanisms) that cause single layer films of organic molecules on solid surfaces (self-assembled monolayers, or SAMs) to detach from the surface under electrochemical operating conditions. The process, which is called reductive desorption, is poorly understood. A better understanding of the process paves the way for the design of more robust SAM systems. A combination of electroanalytical techniques, advanced X-ray and IR spectroscopies are used to provide insight into the mechanism of desorption. Robust SAMs are critical for many practical applications, including their use to anchor catalysts for reactions relevant to energy and environmental chemistry, such as carbon dioxide reduction for solar fuels generation and nitrate reduction for wastewater remediation. This project also provides a platform to promote scientific literacy through formal training of student researchers in communicating to the general public, active engagement with the local community through interactive demonstrations of the concepts of catalysis and corrosion, and hosting Detroit high school students in summer research internships at the University of Michigan.The use of well-defined self-assembled monolayers (SAMs) to tether molecular catalysts to electrode surfaces facilitates the careful mechanistic, kinetic, and spectroelectrochemical studies needed for new catalyst development. However, the use of SAMs for tethering electrocatalysts to electrode surfaces for reactions of societal importance, such as carbon dioxide reduction and nitrate reduction, is limited by the reductive instability of thiol-based SAMs on gold and other metal surfaces. The discovery of reductively-stable SAMs for the direct immobilization of molecular catalysts to metallic surfaces is an enabling technology in molecular electrocatalysis that may facilitate careful and complete mechanistic and kinetic analysis of known and emerging electrocatalysts. Currently, a lack of mechanistic understanding of the reductive desorption process limits the rational design of new, more-reductively stable systems. This project uses a combination of electroanalytical techniques and advanced X-ray and infrared spectroscopies to probe the electronic and physical structures of self-assembled monolayers during the reductive desorption process, providing insights into the mechanism of reductive desorption. The results of these mechanistic studies may facilitate the rational design of new, more reductively-stable SAMs that enable the immobilization and in situ spectroelectrochemical study of electrocatalysts for multi-electron transformations important to energy and environmental chemistry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Professors Charles McCrory and James Penner-Hahn of the University of Michigan-Ann Arbor are supported by the Macromolecular, Supramolecular, and Nanochemistry Program of the NSF Division of Chemistry to study the sequence of events (mechanisms) that cause single layer films of organic molecules on solid surfaces (self-assembled monolayers, or SAMs) to detach from the surface under electrochemical operating 状况。 该过程称为还原性解吸,对此知之甚少。 更好地了解该过程为设计更健壮的SAM系统的设计铺平了道路。 电分析技术,晚期X射线和红外光谱的结合用于洞悉解吸机理。 强大的SAM对于许多实际应用至关重要,包括用于锚定与能量和环境化学相关的反应的催化剂,例如二氧化碳的减少碳燃料生成太阳能燃料的生成和减少硝酸盐,以减少废水补救。该项目还提供了一个平台,通过对学生研究人员进行正式培训在与公众沟通时通过对当地社区进行积极互动,通过交互式演示催化和腐蚀的概念,并在密歇根大学的夏季研究实习中接待底特律高中生,以与当地社区进行积极互动,并在密歇根大学进行夏季研究实习。新催化剂开发所需的机械,动力学和光谱化学研究。然而,将SAM用于将电催化剂绑定到电极表面,以使社会重要性的反应(例如二氧化碳还原和硝酸盐还原)受到硫醇基于黄金和其他金属表面的不稳定性的限制。 发现将分子催化剂直接固定到金属表面的还原稳定的SAM是分子电催化中的一种促成技术,可以促进对已知和新兴电催化剂的仔细和完整的机械和动力学分析。 目前,缺乏对还原解吸过程的机械理解限制了新型,更稳定的系统的合理设计。 该项目结合了电分析技术和先进的X射线和红外光谱镜,在还原性解吸过程中探测了自组装单层的电子和物理结构,从而提供了对还原解吸机制的见解。 这些机械研究的结果可能促进了新的,更稳定的SAM的合理设计,从而使对能源和环境化学重要的多电子转化的电催化剂的固定和原位镜头化学研究重要。这些奖项反映了NSF的法定任务,并通过评估师的构成师的构成和构成师的范围,并反映了构成师的范围。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles McCrory其他文献

Charles McCrory的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles McCrory', 18)}}的其他基金

CAREER: Promoting Selective Electrochemical CO2 Reduction by Controlling a Catalyst's Primary, Secondary, and Outer Coordination Spheres
职业:通过控制催化剂的初级、次级和外配位层促进选择性电化学二氧化碳还原
  • 批准号:
    1751791
  • 财政年份:
    2018
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant

相似国自然基金

阴离子氧化还原活性锰基层状正极材料的结构稳定化构型设计与电荷补偿机理研究
  • 批准号:
    22309085
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
过渡金属与氮共掺杂的碳基纳米电催化剂氧还原稳定性提升机制
  • 批准号:
    22372192
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
氧化还原稠环共轭聚合物储能正极与高效稳定水系锌离子电池
  • 批准号:
    22375170
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
高压电性能和高温度稳定性的抗还原铌酸钾钠基序构陶瓷的研究
  • 批准号:
    52362016
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
过氧化物还原酶Peroxiredoxin6调控ROS-MAPK信号通路影响宰后肉色稳定性机制研究
  • 批准号:
    32360610
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

CAS: Reductive Functionalization of Carbon Dioxide with Light Olefins
CAS:二氧化碳与轻质烯烃的还原官能化
  • 批准号:
    2349537
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Torsors under Reductive Groups and Dualities for Hitchin Systems
希钦系统还原群和对偶下的托索
  • 批准号:
    2402553
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
CAS: Molecular Design of Photoactive Covalent Organic Frameworks Capable of Reductive and Oxidative Degradation of Perfluoroalkyl Substances
CAS:能够还原和氧化降解全氟烷基物质的光活性共价有机框架的分子设计
  • 批准号:
    2247729
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Replacing Aldehydes in Reductive Amination
在还原胺化中取代醛
  • 批准号:
    2870985
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Studentship
Research on trace formulas for covering groups of reductive algebraic groups
还原代数群覆盖群的迹公式研究
  • 批准号:
    23K12951
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了