Increasing the Reductive Stability of Self-Assembled Monolayers on Metallic Surfaces to Enable Reductive Electrocatalysis

提高金属表面自组装单分子层的还原稳定性以实现还原电催化

基本信息

项目摘要

Professors Charles McCrory and James Penner-Hahn of the University of Michigan-Ann Arbor are supported by the Macromolecular, Supramolecular, and Nanochemistry Program of the NSF Division of Chemistry to study the sequence of events (mechanisms) that cause single layer films of organic molecules on solid surfaces (self-assembled monolayers, or SAMs) to detach from the surface under electrochemical operating conditions. The process, which is called reductive desorption, is poorly understood. A better understanding of the process paves the way for the design of more robust SAM systems. A combination of electroanalytical techniques, advanced X-ray and IR spectroscopies are used to provide insight into the mechanism of desorption. Robust SAMs are critical for many practical applications, including their use to anchor catalysts for reactions relevant to energy and environmental chemistry, such as carbon dioxide reduction for solar fuels generation and nitrate reduction for wastewater remediation. This project also provides a platform to promote scientific literacy through formal training of student researchers in communicating to the general public, active engagement with the local community through interactive demonstrations of the concepts of catalysis and corrosion, and hosting Detroit high school students in summer research internships at the University of Michigan.The use of well-defined self-assembled monolayers (SAMs) to tether molecular catalysts to electrode surfaces facilitates the careful mechanistic, kinetic, and spectroelectrochemical studies needed for new catalyst development. However, the use of SAMs for tethering electrocatalysts to electrode surfaces for reactions of societal importance, such as carbon dioxide reduction and nitrate reduction, is limited by the reductive instability of thiol-based SAMs on gold and other metal surfaces. The discovery of reductively-stable SAMs for the direct immobilization of molecular catalysts to metallic surfaces is an enabling technology in molecular electrocatalysis that may facilitate careful and complete mechanistic and kinetic analysis of known and emerging electrocatalysts. Currently, a lack of mechanistic understanding of the reductive desorption process limits the rational design of new, more-reductively stable systems. This project uses a combination of electroanalytical techniques and advanced X-ray and infrared spectroscopies to probe the electronic and physical structures of self-assembled monolayers during the reductive desorption process, providing insights into the mechanism of reductive desorption. The results of these mechanistic studies may facilitate the rational design of new, more reductively-stable SAMs that enable the immobilization and in situ spectroelectrochemical study of electrocatalysts for multi-electron transformations important to energy and environmental chemistry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
查尔斯·麦克罗里教授和詹姆斯·彭纳-哈恩大学安阿伯分校的支持下,大分子,超分子,和纳米化学计划的NSF化学部研究的事件(机制)的顺序,导致单层膜的有机分子在固体表面(自组装单层,或SAMs)脱离表面电化学操作条件下。 这个过程被称为还原解吸,人们对此知之甚少。 更好地理解该过程为设计更强大的SAM系统铺平了道路。 结合电分析技术,先进的X-射线和红外光谱,用于提供深入了解的解吸机制。 坚固的SAM对于许多实际应用至关重要,包括它们用于锚与能源和环境化学相关的反应的催化剂,例如用于太阳能燃料生成的二氧化碳还原和用于废水治理的硝酸盐还原。该项目还提供了一个平台,通过正式培训学生研究人员与公众沟通,通过催化和腐蚀概念的互动演示积极参与当地社区,并在密歇根大学举办底特律高中学生暑期研究实习。使用定义明确的自组装单分子层(SAMs)将分子催化剂束缚到电极表面有助于新催化剂开发所需的仔细的机理、动力学和光谱电化学研究。然而,使用SAM将电催化剂拴系到电极表面以用于具有社会重要性的反应,例如二氧化碳还原和硝酸盐还原,受到基于硫醇的SAM在金和其他金属表面上的还原不稳定性的限制。 用于将分子催化剂直接固定到金属表面的还原稳定的SAM的发现是分子电催化中的一种使能技术,其可以促进对已知和新兴的电催化剂的仔细和完整的机理和动力学分析。 目前,缺乏对还原解吸过程的机械理解限制了新的、还原性更稳定的系统的合理设计。 本项目采用电分析技术和先进的X射线和红外光谱相结合的方法,探测还原脱附过程中自组装单分子膜的电子和物理结构,为还原脱附机制提供见解。 这些机理研究的结果可能有助于合理设计新型、还原稳定性更高的自组装膜,从而实现对能源和环境化学重要的多电子转化电催化剂的固定化和原位光谱电化学研究。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles McCrory其他文献

Charles McCrory的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles McCrory', 18)}}的其他基金

CAREER: Promoting Selective Electrochemical CO2 Reduction by Controlling a Catalyst's Primary, Secondary, and Outer Coordination Spheres
职业:通过控制催化剂的初级、次级和外配位层促进选择性电化学二氧化碳还原
  • 批准号:
    1751791
  • 财政年份:
    2018
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant

相似海外基金

CAS: Reductive Functionalization of Carbon Dioxide with Light Olefins
CAS:二氧化碳与轻质烯烃的还原官能化
  • 批准号:
    2349537
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Torsors under Reductive Groups and Dualities for Hitchin Systems
希钦系统还原群和对偶下的托索
  • 批准号:
    2402553
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
CAS: Molecular Design of Photoactive Covalent Organic Frameworks Capable of Reductive and Oxidative Degradation of Perfluoroalkyl Substances
CAS:能够还原和氧化降解全氟烷基物质的光活性共价有机框架的分子设计
  • 批准号:
    2247729
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Replacing Aldehydes in Reductive Amination
在还原胺化中取代醛
  • 批准号:
    2870985
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Studentship
Research on trace formulas for covering groups of reductive algebraic groups
还原代数群覆盖群的迹公式研究
  • 批准号:
    23K12951
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ammonia production by reduction of nitrogen oxides: Utilization of "reductive actions of ionizing radiations"
通过还原氮氧化物生产氨:利用“电离辐射的还原作用”
  • 批准号:
    23K17893
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Self-sufficient reductive dehalogenases for bioremediation
用于生物修复的自给自足的还原脱卤酶
  • 批准号:
    BB/X007952/1
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Research Grant
Iron-Catalysed Reductive Cross-Coupling
铁催化还原交叉偶联
  • 批准号:
    2889793
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Studentship
Weyl groups and Weyl chamber associated to a Cartan decomposition for reductive real spherical homogeneous space
与还原实球形均匀空间的嘉当分解相关的韦尔群和韦尔室
  • 批准号:
    23K03037
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Function and regulation of the reductive stress response
还原应激反应的功能和调节
  • 批准号:
    10717394
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了