Torsors under Reductive Groups and Dualities for Hitchin Systems
希钦系统还原群和对偶下的托索
基本信息
- 批准号:2402553
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The study of torsors (also known as principal bundles) began in the early 20th century by physicists as a formalism to describe electromagnetism. Later, this was extended to encompass strong and weak interactions, so that torsors became a basis for the so-called Standard Model - a physical theory describing all fundamental forces except for gravitation. The standard model predicted the existence of various particles, the last of which, called the Higgs boson, was found in a Large Hadron Collider experiment in 2012. In 1950's Fields medalist Jean-Pierre Serre recognized the importance of torsors in algebraic geometry. In his 1958 seminal paper he gave the first modern definition of a torsor and formulated a certain deep conjecture. The first part of this project is aimed at proving this conjecture, which is among the oldest unsolved foundational questions in mathematics. The second part of the project is related to the so-called Higgs bundles, which can be thought of as mathematical incarnations of the Higgs bosons. More precisely, the PI proposes to prove a certain duality for the spaces parameterizing Higgs bundles. This duality is a vast generalization of the fact that the Maxwell equations describing electromagnetic fields are symmetric with respect to interchanging electrical and magnetic fields. The duality is a part of the famous Langlands program unifying number theory, algebraic geometry, harmonic analysis, and mathematical physics. This award will support continuing research in these areas. Advising students and giving talks at conferences will also be part of the proposed activity.In more detail, a conjecture of Grothendieck and Serre predicts that a torsor under a reductive group scheme over a regular scheme is trivial locally in the Zariski topology if it is rationally trivial. This conjecture was settled by Ivan Panin and the PI in the equal characteristic case. The conjecture is still far from resolution in the mixed characteristic case, though there are important results in this direction. The PI proposes to resolve the conjecture in the unramified case; that is, for regular local rings whose fibers over the ring of integers are regular. A more ambitious goal is to prove the purity conjecture for torsors, which is, in a sense, the next step after the Grothendieck–Serre conjecture. The second project is devoted to Langlands duality for Hitchin systems, predicting that moduli stacks of Higgs bundles for Langlands dual groups are derived equivalent. This conjecture may be viewed as the classical limit of the geometric Langlands duality. By analogy with the usual global categorical Langlands duality, the PI formulates a local version of the conjecture and the basic compatibility between the local and the global conjecture. The PI will attempt to give a proof of the local conjecture based on the geometric Satake equivalence for Hodge modules constructed by the PI.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
torsor(也称为主束)的研究始于20世纪初,物理学家将其作为描述电磁学的一种形式。后来,这一理论被扩展到强相互作用和弱相互作用,因此,扭转体成为所谓的标准模型的基础——标准模型是一种描述除引力之外的所有基本力的物理理论。标准模型预测了各种粒子的存在,其中最后一种被称为希格斯玻色子的粒子是在2012年的大型强子对撞机实验中发现的。在20世纪50年代,菲尔兹奖得主让-皮埃尔·塞尔认识到向量在代数几何中的重要性。在他1958年的开创性论文中,他给出了torsor的第一个现代定义,并提出了一个深刻的猜想。这个项目的第一部分旨在证明这个猜想,这是数学中最古老的未解决的基础问题之一。该项目的第二部分与所谓的希格斯束有关,它可以被认为是希格斯玻色子的数学化身。更准确地说,PI提出要证明参数化希格斯束的空间的某种对偶性。这种对偶性是描述电磁场的麦克斯韦方程在相互交换的电场和磁场中是对称的这一事实的广泛推广。对偶是著名的朗兰兹程序的一部分,它统一了数论、代数几何、调和分析和数学物理。该奖项将支持这些领域的持续研究。为学生提供建议和在会议上发表演讲也将是拟议活动的一部分。更详细地说,Grothendieck和Serre的一个猜想预言,在正则格式上的约化群格式下的一个扭转量在Zariski拓扑中是局部平凡的,如果它是理性平凡的。这个猜想是由伊万·帕宁和PI在等特征情况下解决的。虽然在这个方向上有重要的结果,但在混合特征情况下,这个猜想还远远没有解决。PI提出在非分支情况下解决猜想;也就是说,对于整数环上的纤维是正则的正则局部环。一个更雄心勃勃的目标是证明torors的纯度猜想,从某种意义上说,这是Grothendieck-Serre猜想之后的下一步。第二个项目致力于研究希钦系统的朗兰兹对偶性,预测朗兰兹对偶群的希格斯束的模堆是等价的。这个猜想可以看作是几何朗兰兹对偶的经典极限。通过类比通常的全局范畴朗兰兹对偶,PI给出了该猜想的局部版本以及局部猜想与全局猜想之间的基本相容。对于由PI构造的Hodge模块,PI将尝试给出基于几何Satake等价的局部猜想的证明。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roman Fedorov其他文献
Identification and characterization of the functional tetrameric UDP-glucose pyrophosphorylase from emKlebsiella pneumoniae/em
肺炎克雷伯氏菌功能性四聚体 UDP-葡萄糖焦磷酸化酶的鉴定与表征
- DOI:
10.1128/mbio.02071-24 - 发表时间:
2024-12-17 - 期刊:
- 影响因子:4.700
- 作者:
Isabel Ramón Roth;Pavel Kats;Timm Fiebig;Françoise Routier;Roman Fedorov;Larissa Dirr;Jana I. Führing - 通讯作者:
Jana I. Führing
SnowWatch: A Multi-modal Citizen Science Application
SnowWatch:多模式公民科学应用程序
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Roman Fedorov;P. Fraternali;C. Pasini - 通讯作者:
C. Pasini
Switch-2 Dependent Modulation of the Myosin Power Stroke
- DOI:
10.1016/j.bpj.2009.12.773 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Daniela Kathmann;Ralph P. Diensthuber;Falk K. Hartmann;Roman Fedorov;Dietmar J. Manstein;Georgios Tsiavaliaris - 通讯作者:
Georgios Tsiavaliaris
SnowWatch: Snow Monitoring through Acquisition and Analysis of User-Generated Content
SnowWatch:通过采集和分析用户生成的内容进行降雪监测
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Roman Fedorov;P. Fraternali;C. Pasini;M. Tagliasacchi - 通讯作者:
M. Tagliasacchi
Using crowdsourced web content for informing water systems operations in snow-dominated catchments
使用众包网络内容来告知以降雪为主的流域的供水系统运行情况
- DOI:
10.5194/hess-20-5049-2016 - 发表时间:
2016 - 期刊:
- 影响因子:6.3
- 作者:
M. Giuliani;A. Castelletti;Roman Fedorov;P. Fraternali - 通讯作者:
P. Fraternali
Roman Fedorov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roman Fedorov', 18)}}的其他基金
Principal Bundles and Higgs Bundles in Algebraic Geometry
代数几何中的主丛和希格斯丛
- 批准号:
2001516 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Principal bundles on local schemes and a duality for Hitchin systems
局部方案的主束和希钦系统的对偶性
- 批准号:
1764391 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Principal bundles on local schemes and a duality for Hitchin systems
局部方案的主束和希钦系统的对偶性
- 批准号:
1406532 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
体硅下薄膜(TUB,Thinfilm Under Bulk)复合结构成型机理及其高性能器件研究
- 批准号:61674160
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Emergent Behaviors of Dense Active Suspensions Under Shear
剪切下致密主动悬架的突现行为
- 批准号:
2327094 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
- 批准号:
2336840 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
- 批准号:
2333889 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
- 批准号:
2333888 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: DRMS:Group cognition, stress arousal, and environment feedbacks in decision making and adaptation under uncertainty
合作研究:DRMS:不确定性下决策和适应中的群体认知、压力唤醒和环境反馈
- 批准号:
2343727 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
- 批准号:
2339062 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Thermal Transport in Polymer Nanofibers under Strain Modulation
职业:应变调制下聚合物纳米纤维的热传输
- 批准号:
2340208 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
NSF PRFB FY23: Cross-species gene regulation of a plant-fungal symbiosis under environmental stress
NSF PRFB FY23:环境胁迫下植物-真菌共生的跨物种基因调控
- 批准号:
2305481 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Fellowship Award
Stereocontrolled Glycosylation under Cooperative Catalysis
协同催化下的立体控制糖基化
- 批准号:
2350461 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
- 批准号:
2337375 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant