Singularity Formation in Kahler Geometry and Yang-Mills Instantons
卡勒几何和杨米尔斯瞬子中奇点的形成
基本信息
- 批准号:2004261
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will study singularity formation of some special geometric structures governed by non-linear partial differential equations. These structures are generalizations of solutions to the Einstein’s equation for gravity and Maxwell’s equation for electromagnetism, and play significant roles in modern theoretical physics (for example string theory and M-theory). The solution to these problems will enhance the understanding of deep interaction between various research directions in mathematics. In the meantime, there are many interesting related questions that may serve as research projects for the training of graduate students interested in this area.The PI will study problems in two specific directions. First, the PI would like to study collapsing of Calabi-Yau metrics, and connections with algebraic geometry and moduli compactification. Previous work of the PI and collaborators has yielded a satisfactory description in the case of minimal degenerations and the PI proposes to study the more general situation. This requires exploiting the existing techniques from collapsing theory, and further developing those. Secondly, the PI will study singularity analysis for Yang-Mills instantons. In the case of Hermitian-Yang-Mills connections over Kahler manifolds, recent work of the PI and Xuemiao Chen gives a complete algebro-geometric description of the tangent cones, and the PI wants to push these further by discovering more refined structures, and by investigating the case of G2 instantons. This requires building algebro-geometric framework, as well as extending some of these to the more analytic setting.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本计画将研究由非线性偏微分方程所控制的特殊几何结构的奇异性形成。这些结构是爱因斯坦引力方程和麦克斯韦电磁方程解的推广,在现代理论物理学(例如弦论和M理论)中发挥着重要作用。这些问题的解决将增进对数学各研究方向之间深层互动关系的理解。与此同时,也有许多有趣的相关问题可以作为研究项目,培养对该领域感兴趣的研究生。PI将从两个具体方向研究问题。首先,PI想研究卡-丘度量的坍缩,以及与代数几何和模紧化的联系。PI和合作者以前的工作已经在最小退化的情况下产生了令人满意的描述,PI建议研究更一般的情况。这就需要从坍缩理论中利用现有的技术,并进一步发展这些技术。其次,PI将研究杨-米尔斯瞬子的奇异性分析。在Kahler流形上的Hermitian-Yang-米尔斯联络的情况下,PI和Xuemiao Chen最近的工作给出了切锥的完整代数几何描述,PI希望通过发现更精细的结构和研究G2瞬子的情况来进一步推动这些。这需要建立代数几何框架,以及将其中一些扩展到更多的分析设置。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Geometry of Calabi-Yau Metrics
卡拉比-丘度量的几何
- DOI:10.1090/noti2454
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Sun, Song
- 通讯作者:Sun, Song
No semistability at infinity for Calabi-Yau metrics asymptotic to cones
Calabi-Yau 度量渐近锥体时无无穷远半稳定性
- DOI:10.1007/s00222-023-01187-4
- 发表时间:2023
- 期刊:
- 影响因子:3.1
- 作者:Sun, Song;Zhang, Junsheng
- 通讯作者:Zhang, Junsheng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Song Sun其他文献
Iron-Mediated Annulation between Methylene Ketones and Diethanolamines: A Sustainable and Scalable Procedure toward N‑(2- Hydroxyethyl) Pyrroles
铁介导的亚甲基酮和二乙醇胺之间的环化:一种可持续且可扩展的 N-(2- 羟乙基) 吡咯合成方法
- DOI:
10.1021/acs.joc.6b011 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Weiming Hu;Jin-Tao Yu;Dengman Y;Zhou Zhou;Song Sun;Jiang Cheng - 通讯作者:
Jiang Cheng
Inter-annual variation of the summer zooplankton community in the Chukchi Sea: spatial heterogeneity during a decade of rapid ice decline
楚科奇海夏季浮游动物群落的年际变化:十年冰层快速衰退期间的空间异质性
- DOI:
10.1007/s00300-018-2324-3 - 发表时间:
2018-05 - 期刊:
- 影响因子:1.7
- 作者:
Zhiqiang Xu;Guangtao Zhang;Song Sun - 通讯作者:
Song Sun
Rh(III)-catalyzed [4 + 1]-annulation of azobenzenes with a- carbonyl sulfoxonium ylides toward 3-acyl-(2H)-indazoles
Rh(III)-催化偶氮苯与α-羰基锍叶立德的[4 1]-成环反应生成3-酰基-(2H)-吲唑
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Jiawei Zhu;Song Sun;Jiang Cheng - 通讯作者:
Jiang Cheng
In vitro iron enrichment experiments in the Prydz Bay, the Southern Ocean: A test of the iron hypothesis
南大洋普里兹湾的体外铁富集实验:铁假说的检验
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Song Sun;X. Pu;Yongshan Zhang - 通讯作者:
Yongshan Zhang
Optimized test pattern selection with machine learning method
利用机器学习方法优化测试模式选择
- DOI:
10.1117/12.2685435 - 发表时间:
2023 - 期刊:
- 影响因子:1.9
- 作者:
Peng Xu;Juan Wei;Jingkang Qin;Jinlai Liu;Guangyu Sun;Song Sun;Cuixiang Wang;Qingchen Cao;Jiangliu Shi - 通讯作者:
Jiangliu Shi
Song Sun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Song Sun', 18)}}的其他基金
Singularity formation in Kahler geometry
卡勒几何中奇点的形成
- 批准号:
2304692 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Degenerations and Moduli Spaces of Kahler Manifolds
卡勒流形的退化和模空间
- 批准号:
1916520 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Degenerations and Moduli Spaces of Kahler Manifolds
卡勒流形的退化和模空间
- 批准号:
1708420 - 财政年份:2017
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Special metrics in complex geometry and applications
复杂几何和应用中的特殊度量
- 批准号:
1405832 - 财政年份:2014
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似国自然基金
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
- 批准号:
10090067 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Collaborative R&D
Cosmic Renaissance: The Last Chance for Planet Formation Around Dying Stars
宇宙复兴:垂死恒星周围行星形成的最后机会
- 批准号:
DP240101150 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Discovery Projects
Cell Wall Formation in Rod Shaped Bacteria
杆状细菌细胞壁的形成
- 批准号:
BB/Y003187/1 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Research Grant
Dark Data from the White Continent: New Light on Five Decades of Vertebrate Paleontology Collections from the Triassic Fremouw Formation of Antarctica
来自白色大陆的暗数据:对南极洲三叠纪 Fremouw 组的五个十年的脊椎动物古生物学收藏的新认识
- 批准号:
2313242 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CAREER: Measurement of Photochemical Mechanisms, Rates, and Pathways of Radical Formation in Complex Organic Compounds
职业:测量复杂有机化合物中自由基形成的光化学机制、速率和途径
- 批准号:
2340926 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
- 批准号:
2409989 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Using soft X-ray coherent diffraction imaging to study and tailor the formation of superfluid helium droplets and quantum vortices within them
使用软 X 射线相干衍射成像来研究和定制超流氦液滴及其内部量子涡旋的形成
- 批准号:
23K28359 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Deciphering the Competing Mechanisms of Li Microstructure Formation in Solid Electrolytes with Nuclear Magnetic Resonance Spectroscopy (NMR) and Imaging (MRI)
利用核磁共振波谱 (NMR) 和成像 (MRI) 解读固体电解质中锂微结构形成的竞争机制
- 批准号:
2319151 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
In-depth Investigation of Lithium Dendrite Formation Processes
深入研究锂枝晶形成过程
- 批准号:
DE240101090 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Discovery Early Career Researcher Award
Do autoantibodies to aberrantly glycosylated MUC1 drive extra-articular rheumatoid arthritis, and can GSK assets prevent driver antigen formation?
针对异常糖基化 MUC1 的自身抗体是否会导致关节外类风湿性关节炎,GSK 资产能否阻止驱动抗原形成?
- 批准号:
MR/Y022947/1 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Research Grant