Degenerations and Moduli Spaces of Kahler Manifolds
卡勒流形的退化和模空间
基本信息
- 批准号:1916520
- 负责人:
- 金额:$ 13.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-31 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Kahler manifolds are of fundamental importance in the study of modern geometry and physics. In particular, they provide framework to finding solutions of Einstein's equation and its generalizations. In this project the PI plans to investigate the deep connection between various points of view on degenerations and moduli spaces of Kahler manifolds satisfying suitable assumptions. The problems are of foundational nature, and answers to these will lead to new techniques and interactions among different fields of mathematics, and will have potential applications in string theory. Recent development in Kahler geometry, in particular, the proof of the Kahler-Einstein result on Fano manifolds, involve the understanding of limits of Kahler manifolds under natural curvature assumptions, from many different angles, including differential geometry, algebraic geometry, and several complex variables. This project aims to extend this further and to build more bridges among various subjects. The main focus will be on two topics. Firstly the PI would like to investigate the algebro-geometric meaning of Gromov-Hausdorff compactifications of Kahler manifolds with bounded Ricci curvature; Secondly, the PI will study a parabolic evolution equation - the Calabi flow, and understand the relationship with algebraic degenerations. The technical tools will be based on previous work of the PI and his collaborators, but essentially new ideas will have to be explored to tackle these questions.
Kahler流形在现代几何和物理学的研究中具有重要意义。特别是,他们提供了框架,以寻找爱因斯坦方程的解决方案及其推广。在这个项目中,PI计划研究满足适当假设的Kahler流形的退化和模空间的各种观点之间的深层联系。这些问题是基础性的,这些问题的答案将导致新的技术和不同数学领域之间的相互作用,并将在弦理论中有潜在的应用。卡勒几何的最新发展,特别是卡勒-爱因斯坦关于法诺流形的结果的证明,涉及到从许多不同的角度,包括微分几何,代数几何和几个复变函数,理解卡勒流形在自然曲率假设下的极限。该项目旨在进一步扩展这一点,并在各学科之间建立更多的桥梁。主要重点将放在两个专题上。首先,PI将研究具有有界Ricci曲率的Kahler流形的Gromov-Hausdorff紧化的代数几何意义;其次,PI将研究抛物发展方程-Calabi流,并了解与代数退化的关系。技术工具将基于PI及其合作者以前的工作,但必须探索新的想法来解决这些问题。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Algebraic Tangent Cones of Reflexive Sheaves
自反滑轮的代数切锥
- DOI:10.1093/imrn/rny276
- 发表时间:2018
- 期刊:
- 影响因子:1
- 作者:Chen, Xuemiao;Sun, Song
- 通讯作者:Sun, Song
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Song Sun其他文献
Iron-Mediated Annulation between Methylene Ketones and Diethanolamines: A Sustainable and Scalable Procedure toward N‑(2- Hydroxyethyl) Pyrroles
铁介导的亚甲基酮和二乙醇胺之间的环化:一种可持续且可扩展的 N-(2- 羟乙基) 吡咯合成方法
- DOI:
10.1021/acs.joc.6b011 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Weiming Hu;Jin-Tao Yu;Dengman Y;Zhou Zhou;Song Sun;Jiang Cheng - 通讯作者:
Jiang Cheng
Inter-annual variation of the summer zooplankton community in the Chukchi Sea: spatial heterogeneity during a decade of rapid ice decline
楚科奇海夏季浮游动物群落的年际变化:十年冰层快速衰退期间的空间异质性
- DOI:
10.1007/s00300-018-2324-3 - 发表时间:
2018-05 - 期刊:
- 影响因子:1.7
- 作者:
Zhiqiang Xu;Guangtao Zhang;Song Sun - 通讯作者:
Song Sun
Rh(III)-catalyzed [4 + 1]-annulation of azobenzenes with a- carbonyl sulfoxonium ylides toward 3-acyl-(2H)-indazoles
Rh(III)-催化偶氮苯与α-羰基锍叶立德的[4 1]-成环反应生成3-酰基-(2H)-吲唑
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Jiawei Zhu;Song Sun;Jiang Cheng - 通讯作者:
Jiang Cheng
In vitro iron enrichment experiments in the Prydz Bay, the Southern Ocean: A test of the iron hypothesis
南大洋普里兹湾的体外铁富集实验:铁假说的检验
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Song Sun;X. Pu;Yongshan Zhang - 通讯作者:
Yongshan Zhang
Optimized test pattern selection with machine learning method
利用机器学习方法优化测试模式选择
- DOI:
10.1117/12.2685435 - 发表时间:
2023 - 期刊:
- 影响因子:1.9
- 作者:
Peng Xu;Juan Wei;Jingkang Qin;Jinlai Liu;Guangyu Sun;Song Sun;Cuixiang Wang;Qingchen Cao;Jiangliu Shi - 通讯作者:
Jiangliu Shi
Song Sun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Song Sun', 18)}}的其他基金
Singularity formation in Kahler geometry
卡勒几何中奇点的形成
- 批准号:
2304692 - 财政年份:2023
- 资助金额:
$ 13.16万 - 项目类别:
Standard Grant
Singularity Formation in Kahler Geometry and Yang-Mills Instantons
卡勒几何和杨米尔斯瞬子中奇点的形成
- 批准号:
2004261 - 财政年份:2020
- 资助金额:
$ 13.16万 - 项目类别:
Standard Grant
Degenerations and Moduli Spaces of Kahler Manifolds
卡勒流形的退化和模空间
- 批准号:
1708420 - 财政年份:2017
- 资助金额:
$ 13.16万 - 项目类别:
Standard Grant
Special metrics in complex geometry and applications
复杂几何和应用中的特殊度量
- 批准号:
1405832 - 财政年份:2014
- 资助金额:
$ 13.16万 - 项目类别:
Standard Grant
相似国自然基金
高维代数流形Moduli空间和纤维丛的几何及其正特征代数簇相关问题
- 批准号:11271070
- 批准年份:2012
- 资助金额:50.0 万元
- 项目类别:面上项目
相似海外基金
Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
- 批准号:
EP/Y037162/1 - 财政年份:2024
- 资助金额:
$ 13.16万 - 项目类别:
Research Grant
CAREER: Moduli Spaces, Fundamental Groups, and Asphericality
职业:模空间、基本群和非球面性
- 批准号:
2338485 - 财政年份:2024
- 资助金额:
$ 13.16万 - 项目类别:
Continuing Grant
Novel Approaches to Geometry of Moduli Spaces
模空间几何的新方法
- 批准号:
2401387 - 财政年份:2024
- 资助金额:
$ 13.16万 - 项目类别:
Standard Grant
Analysis of singularities of extremal Riemann surfaces and Klein surfaces in moduli spaces
模空间中极值黎曼曲面和克莱因曲面的奇异性分析
- 批准号:
23K03138 - 财政年份:2023
- 资助金额:
$ 13.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry and dynamics in moduli spaces of surfaces
表面模空间中的几何和动力学
- 批准号:
2304840 - 财政年份:2023
- 资助金额:
$ 13.16万 - 项目类别:
Standard Grant
Moduli spaces of Galois representations
伽罗瓦表示的模空间
- 批准号:
2302619 - 财政年份:2023
- 资助金额:
$ 13.16万 - 项目类别:
Standard Grant
LEAPS-MPS: Describing Compactifications of Moduli Spaces of Varieties and Pairs.
LEAPS-MPS:描述簇和对模空间的紧化。
- 批准号:
2316749 - 财政年份:2023
- 资助金额:
$ 13.16万 - 项目类别:
Standard Grant
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
- 批准号:
23K12949 - 财政年份:2023
- 资助金额:
$ 13.16万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Complex dynamics via tropical moduli spaces
通过热带模空间的复杂动力学
- 批准号:
EP/X026612/1 - 财政年份:2023
- 资助金额:
$ 13.16万 - 项目类别:
Research Grant
CAREER: Mapping class groups, diffeomorphism groups, and moduli spaces
职业:映射类群、微分同胚群和模空间
- 批准号:
2236705 - 财政年份:2023
- 资助金额:
$ 13.16万 - 项目类别:
Continuing Grant