Polymer conjugates that adapt vancomycin to overcome resistance in Gram-negative bacteria

采用万古霉素克服革兰氏阴性菌耐药性的聚合物缀合物

基本信息

项目摘要

Non-technical abstractThe rapid spread of drug-resistant bacteria is a severe global health crisis. In the last 40 years, there has not been new antibiotics to treat drug-resistant bacterial infections. One issue for creating a new antibiotic therapy is the impermeable outer membrane (OM) of Gram-negative bacteria such as Escherichia coli, which prevents entry of certain antibiotics. For example, vancomycin is a promising antibiotic of last resort, but since it cannot penetrate the bacteria’s OM, it is not successful for Gram-negative bacterial infections. The long-term goal of this study is to develop a new way to convert vancomycin into an effective treatment of drug-resistant Gram-negative bacterial infections. The information from this study will help researchers create new rules to design a carrier that helps effective drugs bypass the OM and reach the target sites within bacteria. The study increases the number of antibiotics available to treat drug-resistant bacterial infections and significantly improve a patient’s health. The proposed research is interdisciplinary. Students and postdocs will learn molecular design, how to build polymer-antibiotic pairs, and conduct research projects involving polymer chemistry, biomaterials, and microbiology. To contribute to diversity, equity, and inclusion, the PI accepts students from the University of Michigan’s Undergraduate Research Opportunity Program. The PI engages primary and secondary schools through the ACS POLY/PMSE student chapter outreach program. The PI participates in the UM’s Summer Research Opportunity Program as a research mentor for under-represented students from across the country. The PI will also build international research collaborations and student exchange programs with research groups in Japan. Technical abstractConverting Gram-positive-only vancomycin to be active against Gram-negative bacteria is a promising approach to increase our arsenal of new antibiotics against drug-resistant bacteria. However, molecular rules for the conversion have not been established for the large/globular glycopeptide vancomycin. To that end, membrane-active polymer carriers will be designed to pass through the outer membrane (OM), increase the local concentration of vancomycin on the inner (cytoplasmic) membrane (IM), and deliver vancomycin to the cell division septum region, where vancomycin would be most active. The specific goals of this study are to understand the structure-activity-mechanism relationship of the polymer-drug conjugates and determine their therapeutic potential for clinical applications. To achieve these goals, covalent conjugates of vancomycin with the cationic amphiphilic copolymers will be synthesized through click chemistry. The antimicrobial activity and underlying mechanism of action will be studied to determine the abilities of conjugates to permeate the OM, concentrate vancomycin on the IM, and accumulate at the septum. To evaluate the therapeutic potential of conjugates, the PI will evaluate the cytotoxicity of conjugates to mammalian cells, potency against carbapenem-resistant E. coli, and the spectrum of activity against other Gram-negative bacterial pathogens. The expected outcomes will lead to a rational and predictable guideline for molecular design of polymer carriers for targeted drug delivery to the specific membrane structure within bacteria. The outcomes of this research will also increase our understating of the physicochemical interactions between polymer and bacterial cell structures, which can be exploited to enhance the antimicrobial activity of antibiotics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要耐药细菌的迅速传播是一个严重的全球健康危机。在过去的40年里,没有新的抗生素来治疗耐药细菌感染。创建新的抗生素疗法的一个问题是革兰氏阴性细菌(如大肠杆菌)的不可渗透的外膜(OM),其阻止某些抗生素的进入。例如,万古霉素是一种有前途的抗生素的最后手段,但由于它不能穿透细菌的OM,它是不成功的革兰氏阴性细菌感染。本研究的长期目标是开发一种新的方法,将万古霉素转化为耐药革兰氏阴性菌感染的有效治疗方法。这项研究的信息将帮助研究人员制定新的规则来设计一种载体,帮助有效的药物绕过OM并到达细菌内的靶点。该研究增加了可用于治疗耐药细菌感染的抗生素数量,并显着改善患者的健康状况。拟议的研究是跨学科的。学生和博士后将学习分子设计,如何建立聚合物-抗生素对,并进行涉及聚合物化学,生物材料和微生物学的研究项目。为了促进多样性,公平性和包容性,PI接受密歇根大学本科生研究机会计划的学生。PI通过ACS POLY/PMSE学生分会外展计划与小学和中学接触。PI参加了UM的夏季研究机会计划,作为来自全国各地的代表性不足的学生的研究导师。PI还将与日本的研究团体建立国际研究合作和学生交流计划。将仅革兰氏阳性的万古霉素转化为对革兰氏阴性菌有活性的万古霉素是一种有前途的方法,以增加我们对耐药菌的新抗生素库。然而,对于大/球状糖肽万古霉素,尚未建立转化的分子规则。为此,膜活性聚合物载体将被设计为穿过外膜(OM),增加内(细胞质)膜(IM)上万古霉素的局部浓度,并将万古霉素递送至细胞分裂隔膜区域,在该区域万古霉素将最具活性。本研究的具体目标是了解聚合物-药物偶联物的结构-活性-机制关系,并确定其临床应用的治疗潜力。为了实现这些目标,将通过点击化学合成万古霉素与阳离子两亲性共聚物的共价缀合物。将研究抗微生物活性和潜在作用机制,以确定结合物渗透OM、在IM上浓缩万古霉素以及在隔膜处蓄积的能力。为了评估偶联物的治疗潜力,PI将评估偶联物对哺乳动物细胞的细胞毒性、抗碳青霉烯类耐药大肠杆菌的效力。大肠杆菌,和对其他革兰氏阴性细菌病原体的活性谱。预期的结果将导致一个合理的和可预测的指导方针的分子设计的聚合物载体的靶向药物输送到特定的膜结构内的细菌。这项研究的成果也将增加我们对聚合物和细菌细胞结构之间的物理化学相互作用的理解,这可以用来提高抗生素的抗菌活性。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanistic Study of Membrane Disruption by Antimicrobial Methacrylate Random Copolymers by the Single Giant Vesicle Method
单巨囊泡法研究抗菌甲基丙烯酸酯无规共聚物膜破坏机理
  • DOI:
    10.1021/acs.langmuir.1c01047
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Tsukamoto, Manami;Zappala, Emanuele;Caputo, Gregory A.;Kikuchi, Jun-ichi;Najarian, Kayvan;Kuroda, Kenichi;Yasuhara, Kazuma
  • 通讯作者:
    Yasuhara, Kazuma
An Antimicrobial Peptide-Mimetic Methacrylate Random Copolymer Induces Domain Formation in a Model Bacterial Membrane
  • DOI:
    10.1007/s00232-022-00220-6
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Yasuhara;Manami Tsukamoto;J. Kikuchi;K. Kuroda
  • 通讯作者:
    K. Yasuhara;Manami Tsukamoto;J. Kikuchi;K. Kuroda
Towards designing globular antimicrobial peptide mimics: role of polar functional groups in biomimetic ternary antimicrobial polymers
设计球状抗菌肽模拟物:极性官能团在仿生三元抗菌聚合物中的作用
  • DOI:
    10.1039/d0sm01896a
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Rani, Garima;Kuroda, Kenichi;Vemparala, Satyavani
  • 通讯作者:
    Vemparala, Satyavani
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenichi Kuroda其他文献

Single Instruction Dual-Execution Model Processor Architecture
单指令双执行模型处理器架构
Structural determinants of antimicrobial activity in polymers which mimic host defense peptides
  • DOI:
    10.1007/s00253-010-2687-z
  • 发表时间:
    2010-06-19
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Edmund F. Palermo;Kenichi Kuroda
  • 通讯作者:
    Kenichi Kuroda
Estimation of tire wear using multiple tribocharge sensors mounted inside tire
使用安装在轮胎内部的多个摩擦电荷传感器估计轮胎磨损
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Koki Hosoda;Hiroshi Tani;Renguo Lu;Shinji Koganezawa;Shohei Kawada;Norio Tagawa;Takahiro Fujiwara;Kyota Sugioka;Kenichi Kuroda;Mutsuki Sugimoto;Yukio Nakao
  • 通讯作者:
    Yukio Nakao
A Hardware Algorithm for the Minimum p-quasi Clique Cover Problem
最小p-拟团覆盖问题的硬件算法
Proposal and Implementation of Framework for Self-Reproductive Applications on Dynamically Reconfigurable Device PCA
动态可重构器件PCA上自复制应用框架的提出和实现
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Kamiyama;Keigo Kurata;Y. Ikehata;J. Kitamichi;Kenichi Kuroda
  • 通讯作者:
    Kenichi Kuroda

Kenichi Kuroda的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kenichi Kuroda', 18)}}的其他基金

CAREER: Functional Scaffolds for Polymeric Antimicrobial Agents
职业:聚合物抗菌剂的功能支架
  • 批准号:
    0845592
  • 财政年份:
    2009
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant

相似国自然基金

利用纳米金-核酸复合物阻断乏氧信号通路和抑制肿瘤细胞增殖的研究
  • 批准号:
    31100716
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of programmable nanomachines towards the enzymatic synthesis of peptide oligonucleotide conjugates
开发用于肽寡核苷酸缀合物酶促合成的可编程纳米机器
  • 批准号:
    EP/X019624/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Fellowship
CAREER: atomistic characterization of protein-polymer conjugates
职业:蛋白质-聚合物缀合物的原子表征
  • 批准号:
    2339330
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Antibody-Palladium Conjugates for Bioorthogonal Anti-Cancer Prodrug Activation
用于生物正交抗癌前药激活的抗体-钯缀合物
  • 批准号:
    EP/Y024540/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Fellowship
Development of Targeted Antipseudomonal Bactericidal Prodrugs
靶向抗假单胞菌杀菌前药的开发
  • 批准号:
    10678074
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
Alternatively spliced cell surface proteins as drivers of leukemogenesis and targets for immunotherapy
选择性剪接的细胞表面蛋白作为白血病发生的驱动因素和免疫治疗的靶点
  • 批准号:
    10648346
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
  • 批准号:
    10651082
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
Molecular regulation and expression of Trop-2 in advanced prostate cancer: Identifying optimal therapeutic niches
晚期前列腺癌中 Trop-2 的分子调控和表达:确定最佳治疗领域
  • 批准号:
    10735996
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
Novel Polymer-antibody Conjugates as Long-acting Therapeutics for Ocular Diseases
新型聚合物-抗体缀合物作为眼部疾病的长效治疗药物
  • 批准号:
    10760186
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
Development of antibody drug conjugates as pan-filo antivirals
开发作为泛型抗病毒药物的抗体药物偶联物
  • 批准号:
    10759731
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
Development of peptide drug conjugates for cancer therapy
开发用于癌症治疗的肽药物缀合物
  • 批准号:
    10760236
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了