Harnessing room-temperature quantum-dot-like states in 2D materials for nanoscale non-classical light sources
利用二维材料中的室温类量子点态来实现纳米级非经典光源
基本信息
- 批准号:2004437
- 负责人:
- 金额:$ 58.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical SummaryLight-based quantum technologies rely on the creation and manipulation of individual photons, the discrete fundamental packets of energy that constitute light. Engineers and scientists who are seeking to use light for quantum technologies require “single-photon emitter” devices that produce just a single photon with a flip of a switch. Such devices, however, need single-photon emitting materials that are hard to come by because they also need to be compatible with modern semiconductor engineering and fabrication techniques. Recently, a new class of single-photon emitters was discovered in ultrathin two-dimensional materials and was greeted with much excitement because, among other advantages, two-dimensional materials can be more easily integrated into devices than most other single-photon emitting materials. However, the underlying material properties and physical phenomena that lead to the single-photon emission in two-dimensional materials remain unknown: it is known that single-photon emitters exist, but it is not known why. This project aims to answer this critical question by combining highly sophisticated optical microscopy techniques to study single-photon emitters in two-dimensional materials on ultrasmall length scales. The experimental studies are complemented by the development of theoretical models to better predict their behavior and identify ways to improve their performance for quantum technologies. These research activities include strong components of quantum-centered education and workforce training, including highly interdisciplinary Ph.D. research, integrated undergraduate research opportunities, curriculum development, and public and K-12 outreach activities.Technical SummaryLight-based quantum technologies necessitate quantum emitters to produce single photons or entangled photon pairs on demand. The discovery of single-photon emitters (SPEs) in monolayer WSe2 (1L-WSe2) ushered in a revolutionary class of solid-state quantum emitters with new opportunities for deterministic positioning, facile emitter control, and integrability into photonic architectures. However, the physical mechanisms giving rise to these promising states are still unknown, hindering their development. Using state-of-the-art theoretical modeling with advanced experimental characterization, a new mechanism of strain-induced exciton localization in 1L-WSe2 was previously identified. It upends the understanding of strain localization of excitons in two-dimensional semiconductors and may be the mechanism that underlies many SPEs in 1L-WSe2. With an overarching goal of developing an understanding of SPE phenomena in 1L-WSe2 that will guide their development into controllable quantum photonic devices, this project is focused on (1) investigating whether the newly discovered states are room-temperature SPEs; (2) establishing the roles of these states in known low-temperature SPEs; and (3) exploring new routes for engineering the creation and active control of SPEs in 1L-WSe2 and other two-dimensional materials. The research strategy combines nano-optical characterization with low-temperature quantum optical measurements and theory, and it is integrated with educational efforts emphasizing mentoring and hands-on learning about photonic materials, quantum optical characterization techniques, and the fundamentals of quantum information science for students in high school through graduate school.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基于光的量子技术依赖于单个光子的产生和操纵,光子是构成光的离散基本能量包。寻求将光用于量子技术的工程师和科学家需要“单光子发射器”设备,只需翻转开关即可产生单个光子。然而,这样的设备需要单光子发射材料,这是很难得到的,因为它们还需要与现代半导体工程和制造技术兼容。最近,一类新的单光子发射体在二维材料中被发现,并且受到了极大的欢迎,因为除了其他优点之外,二维材料可以比大多数其他单光子发射材料更容易集成到设备中。然而,导致二维材料中单光子发射的基本材料性质和物理现象仍然未知:已知单光子发射体存在,但不知道为什么。该项目旨在通过结合高度复杂的光学显微镜技术来研究超小长度尺度上二维材料中的单光子发射器来回答这个关键问题。理论模型的开发补充了实验研究,以更好地预测其行为,并确定提高量子技术性能的方法。这些研究活动包括以量子为中心的教育和劳动力培训的重要组成部分,包括高度跨学科的博士学位。研究,综合本科生研究机会,课程开发,以及公共和K-12推广活动。技术摘要基于光的量子技术需要量子发射器按需产生单光子或纠缠光子对。单层WSe 2(1 L-WSe 2)中单光子发射器(SPE)的发现带来了一类革命性的固态量子发射器,为确定性定位,轻松的发射器控制和集成到光子架构中带来了新的机会。然而,产生这些有希望的状态的物理机制仍然是未知的,阻碍了它们的发展。使用先进的实验表征的最先进的理论建模,一个新的机制,应变诱导激子本地化在1 L-WSe 2先前确定。它颠覆了二维半导体中激子应变局域化的理解,可能是1 L-WSe 2中许多SPE的基础机制。本项目的总体目标是发展对1 L-WSe 2中SPE现象的理解,以指导其发展为可控量子光子器件,该项目的重点是:(1)调查新发现的状态是否是室温SPE;(2)确定这些状态在已知低温SPE中的作用;以及(3)探索在1 L-WSe 2和其他二维材料中工程化产生和主动控制SPE的新途径。该研究策略将纳米光学表征与低温量子光学测量和理论相结合,并与教育工作相结合,强调指导和实践学习光子材料,量子光学表征技术,和量子信息科学的基本原理,为学生在高中通过研究生院。这个奖项反映了NSF的法定使命,并已被认为是值得支持,使用基金会的知识价值和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Borys其他文献
Width-dependent continuous growth of atomically thin quantum nanoribbons from nanoalloy seeds in chalcogen vapor
在硫属元素蒸气中,从纳米合金种子原子级薄量子纳米带的宽度相关连续生长
- DOI:
10.1038/s41467-024-54413-9 - 发表时间:
2024-11-21 - 期刊:
- 影响因子:15.700
- 作者:
Xufan Li;Samuel Wyss;Emanuil Yanev;Qing-Jie Li;Shuang Wu;Yongwen Sun;Raymond R. Unocic;Joseph Stage;Matthew Strasbourg;Lucas M. Sassi;Yingxin Zhu;Ju Li;Yang Yang;James Hone;Nicholas Borys;P. James Schuck;Avetik R. Harutyunyan - 通讯作者:
Avetik R. Harutyunyan
Nicholas Borys的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Borys', 18)}}的其他基金
EAGER: Enabling Quantum Leap: Scalable, Controllable and Tunable Room- Temperature Quantum Emitters in Mono-layer WSe2
EAGER:实现量子飞跃:单层 WSe2 中的可扩展、可控和可调谐室温量子发射器
- 批准号:
1838403 - 财政年份:2018
- 资助金额:
$ 58.68万 - 项目类别:
Standard Grant
相似海外基金
Near-room Temperature Solid-state Hydrogen Storage
近室温固态储氢
- 批准号:
EP/Y007778/1 - 财政年份:2024
- 资助金额:
$ 58.68万 - 项目类别:
Research Grant
Electric and optical manipulation of 2D excitons for room temperature polariton blockade and valley qubits
用于室温极化子封锁和谷量子位的二维激子的电和光操纵
- 批准号:
EP/Y021789/1 - 财政年份:2024
- 资助金额:
$ 58.68万 - 项目类别:
Research Grant
The development of new instruments based on miniaturised room temperature MASERs: MASER in a Shoebox
基于小型化室温 MASER 的新仪器的开发:鞋盒中的 MASER
- 批准号:
EP/Y00471X/1 - 财政年份:2024
- 资助金额:
$ 58.68万 - 项目类别:
Research Grant
Room Temperature High Energy Density Sodium-Sulfur Batteries
室温高能量密度钠硫电池
- 批准号:
DP240101548 - 财政年份:2024
- 资助金额:
$ 58.68万 - 项目类别:
Discovery Projects
CAREER: Towards room-temperature quantum simulators enabled by halide perovskites
职业:迈向由卤化物钙钛矿实现的室温量子模拟器
- 批准号:
2414131 - 财政年份:2024
- 资助金额:
$ 58.68万 - 项目类别:
Continuing Grant
Mid-infrared quantum dots for room temperature photodetectors and emitters
用于室温光电探测器和发射器的中红外量子点
- 批准号:
DP240101309 - 财政年份:2024
- 资助金额:
$ 58.68万 - 项目类别:
Discovery Projects
Developing Room-Temperature Liquid Metal Batteries for Safe Energy Storage
开发用于安全储能的室温液态金属电池
- 批准号:
DE240100159 - 财政年份:2024
- 资助金额:
$ 58.68万 - 项目类别:
Discovery Early Career Researcher Award
Electric and optical manipulation of 2D excitons for room temperature polariton blockade and valley qubits
用于室温极化子封锁和谷量子位的二维激子的电和光操纵
- 批准号:
EP/Y021339/1 - 财政年份:2024
- 资助金额:
$ 58.68万 - 项目类别:
Research Grant
Room-temperature flexible manipulation of the quantum-metric structure in topological chiral antiferromagnets
拓扑手性反铁磁体中量子度量结构的室温灵活操控
- 批准号:
24K16999 - 财政年份:2024
- 资助金额:
$ 58.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Room-temperature Superfluorescence in Multi-fluorophore Protein Cages and Its Origins
合作研究:多荧光团蛋白笼中的室温超荧光及其起源
- 批准号:
2232718 - 财政年份:2023
- 资助金额:
$ 58.68万 - 项目类别:
Standard Grant