CAREER: Towards room-temperature quantum simulators enabled by halide perovskites

职业:迈向由卤化物钙钛矿实现的室温量子模拟器

基本信息

  • 批准号:
    2414131
  • 负责人:
  • 金额:
    $ 75.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-01-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Non-Technical DescriptionQuantum effects are any phenomena that typically happen at small scales and cannot be explained by classical mechanics. There are many important research problems involving quantum effects that classical computers cannot fully solve. For example, the rational design of complex materials can require understanding the collective behavior of many atomic components and their quantum interactions. A quantum simulator is a device that can actively consider the complex interactions (quantum effects) to model these real-world complex systems in a programmable fashion. However, traditionally, these quantum simulators have to work at ultralow temperatures, making them expensive to prepare and operate. This CAREER project aims to transform the field of quantum simulators through a combined research and education program focused on novel optical materials and their integration approaches for realizing quantum simulators at room temperature. Specifically, the PI will synthesize novel new optical materials, integrate them with photonic structures, demonstrate functional room-temperature quantum simulators, and use them to study the rich exotic materials properties that are previously challenging to fully understand. An integrated education program will also expand quantum science and technology accessibility in Nebraska by working with teachers via workshops and labs to provide them with a scientific frontier perspective. Additionally, this program will engage undergraduate and high school students in workshops and internships, with a particular focus on first-generation college students and students from traditionally underrepresented groups. These efforts aim to increasing the diversity and competitiveness of the future scientific workforce.Technical description: The goals of this project are to reveal quantum phenomena previously observed only at low-temperature at room temperature (RT) with excitonic halide perovskites materials in the optical cavities and build a competitive quantum optics education program at the University of Nebraska-Lincoln. Strong coupling between excitons and photons in high-quality optical cavities produces a new hybrid half-matter, half-light quasiparticle called exciton-polariton that exhibits ultrasmall effective mass inherited from the photon and significant nonlinearity inherited from the exciton. These qualities allow exciton-polaritons to undergo a transition to Bose-Einstein condensation at RT, potentially enabling a broad range of applications, such as optical analog quantum simulators and low threshold polariton lasers. The project will significantly expand our understanding of how excitons interact at RT and form stable polariton quantum liquid in these new perovskite material systems. It also provides a fantastic photonic platform for exploring the macroscopic quantum phenomenon at RT without requiring complicated and expensive ultracold atoms, cryostats, or molecular beam epitaxy growth vacuum chambers. Lastly, the tunable mode splitting in perovskite microcavities behaves as an effective magnetic field on photon spin, enabling studies on synthetic non-Abelian gauge fields and topological physics at RT. This research, which will utilize nanofabrication, materials synthesis, and optical spectroscopy methods to study halide perovskite materials, promises to transform the field of RT polaritonics and quantum simulators. It will also undergird an integrated education program focusing on quantum photonics. A graduate course, various outreach pathways, and a K-12 teacher workshop, all featuring research frontiers in quantum photonics, will be developed with the ultimate goal of building a diverse, globally competitive workforce pipeline on quantum science, a critical knowledge frontier for the nation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由2021年美国救援计划法案(公法117-2)资助。非技术描述量子效应是通常发生在小尺度上的任何现象,不能用经典力学解释。有许多涉及量子效应的重要研究问题是经典计算机无法完全解决的。例如,复杂材料的合理设计可能需要理解许多原子成分的集体行为及其量子相互作用。量子模拟器是一种可以主动考虑复杂相互作用(量子效应)的设备,以可编程的方式对这些现实世界的复杂系统进行建模。然而,传统上,这些量子模拟器必须在超低温下工作,这使得它们的准备和操作成本高昂。该CAREER项目旨在通过一个综合研究和教育计划来改变量子模拟器领域,该计划专注于新型光学材料及其在室温下实现量子模拟器的集成方法。具体而言,PI将合成新型光学材料,将其与光子结构集成,演示功能性室温量子模拟器,并使用它们来研究丰富的奇异材料特性,这些特性以前很难完全理解。综合教育计划还将通过研讨会和实验室与教师合作,为他们提供科学前沿视角,从而扩大内布拉斯加州的量子科学和技术可及性。此外,该计划将让本科生和高中生参加研讨会和实习,特别关注第一代大学生和传统上代表性不足的群体的学生。这些努力旨在提高未来科学劳动力的多样性和竞争力。技术描述:该项目的目标是揭示以前仅在室温(RT)下观察到的量子现象,并在内布拉斯加大学林肯分校建立具有竞争力的量子光学教育计划。激子和光子在高质量光学腔中的强耦合产生了一种新的混合半物质,半光准粒子,称为激子-极化激子,它表现出从光子继承的超小有效质量和从激子继承的显着非线性。这些性质允许激子-极化激元在RT下经历玻色-爱因斯坦凝聚的转变,潜在地使广泛的应用成为可能,例如光学模拟量子模拟器和低阈值极化激元激光器。该项目将大大扩展我们对激子如何在RT下相互作用的理解,并在这些新的钙钛矿材料系统中形成稳定的极化子量子液体。它还提供了一个奇妙的光子平台,用于在RT下探索宏观量子现象,而不需要复杂和昂贵的超冷原子,低温恒温器或分子束外延生长真空室。最后,钙钛矿微腔中的可调谐模式分裂表现为光子自旋的有效磁场,使合成非阿贝尔规范场和拓扑物理研究在RT.这项研究,将利用纳米纤维,材料合成和光谱学方法来研究卤化物钙钛矿材料,有望改变RT极化激元学和量子模拟器领域。它还将加强以量子光子学为重点的综合教育计划。将开发一门研究生课程,各种外展途径和一个K-12教师研讨会,所有这些都以量子光子学的研究前沿为特色,最终目标是建立一个多样化的,具有全球竞争力的量子科学劳动力管道。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei Bao其他文献

Deterministic adn replaceable transfer of silver flakes for microcavities
用于微腔的银片的确定性和可替换转移
  • DOI:
    10.1007/s11467-022-1229-3
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Tingting Wang;Zhihao Zang;Yuchen Gao;Kenji Watanabe;Takashi Taniguchi;Wei Bao;Yu Ye
  • 通讯作者:
    Yu Ye
State heterogeneity of human mobility and COVID-19 epidemics in the European Union
欧盟人口流动和 COVID-19 流行病的国家异质性
  • DOI:
    10.1101/2020.06.10.20127530
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaoling Yuan;Kun Hu;Jie Xu;Xuchen Zhang;Wei Bao;Charles F. Lynch;Lanjing Zhang
  • 通讯作者:
    Lanjing Zhang
Study of the disturbance propagation in the discrete model of power networks
电力网络离散模型中扰动传播的研究
Unsupervised multilingual machine translation with pretrained cross-lingual encoders
使用预训练的跨语言编码器进行无监督多语言机器翻译
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Yingli Shen;Wei Bao;Ge Gao;Maoke Zhou;Xiaobing Zhao
  • 通讯作者:
    Xiaobing Zhao
DENKIMPULS DIGITALE ETHIK: Transparency and explainability of algorithmic systems
DENKIMPULS DIGITALE ETHIK:算法系统的透明度和可解释性
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Sani;Dong Yuan;Phee Lep Yeoh;J. Qiu;Wei Bao;B. Vucetic;Zhao Yang Dong
  • 通讯作者:
    Zhao Yang Dong

Wei Bao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wei Bao', 18)}}的其他基金

CAREER: Towards room-temperature quantum simulators enabled by halide perovskites
职业:迈向由卤化物钙钛矿实现的室温量子模拟器
  • 批准号:
    2143041
  • 财政年份:
    2022
  • 资助金额:
    $ 75.67万
  • 项目类别:
    Continuing Grant

相似海外基金

Towards LED-pumped Masers: a new class of room-temperature masers
迈向 LED 泵浦微波激射器:新型室温微波激射器
  • 批准号:
    EP/X016633/1
  • 财政年份:
    2023
  • 资助金额:
    $ 75.67万
  • 项目类别:
    Research Grant
CAREER: Towards room-temperature quantum simulators enabled by halide perovskites
职业:迈向由卤化物钙钛矿实现的室温量子模拟器
  • 批准号:
    2143041
  • 财政年份:
    2022
  • 资助金额:
    $ 75.67万
  • 项目类别:
    Continuing Grant
Towards Room Temperature Rechargeable Fluoride-Ion Batteries
走向室温可充电氟离子电池
  • 批准号:
    EP/V014994/1
  • 财政年份:
    2021
  • 资助金额:
    $ 75.67万
  • 项目类别:
    Research Grant
Computational Materials Discovery at Room Temperature: towards Net Zero
室温下计算材料的发现:迈向净零
  • 批准号:
    MR/V023926/1
  • 财政年份:
    2021
  • 资助金额:
    $ 75.67万
  • 项目类别:
    Fellowship
Towards room-temperature multiferroics by doping and ionic liquid gating
通过掺杂和离子液体门控实现室温多铁性
  • 批准号:
    DP200102477
  • 财政年份:
    2020
  • 资助金额:
    $ 75.67万
  • 项目类别:
    Discovery Projects
Towards a Model of Safety and Care for Trauma Room Design
建立创伤室设计的安全和护理模型
  • 批准号:
    10251968
  • 财政年份:
    2019
  • 资助金额:
    $ 75.67万
  • 项目类别:
Towards a Model of Safety and Care for Trauma Room Design
建立创伤室设计的安全和护理模型
  • 批准号:
    10488646
  • 财政年份:
    2019
  • 资助金额:
    $ 75.67万
  • 项目类别:
Towards a Model of Safety and Care for Trauma Room Design
建立创伤室设计的安全和护理模型
  • 批准号:
    10004640
  • 财政年份:
    2019
  • 资助金额:
    $ 75.67万
  • 项目类别:
Towards a Model of Safety and Care for Trauma Room Design
建立创伤室设计的安全和护理模型
  • 批准号:
    9902825
  • 财政年份:
    2019
  • 资助金额:
    $ 75.67万
  • 项目类别:
SPOiLER: towards Safer Prescribing of Legal Opioids from the Emergency Room
剧透:在急诊室更安全地开出合法阿片类药物
  • 批准号:
    10364730
  • 财政年份:
    2018
  • 资助金额:
    $ 75.67万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了