Elements: Cyberinfrastructure Service for IoT-Based Construction Research and Applications
要素:基于物联网的建筑研究和应用的网络基础设施服务
基本信息
- 批准号:2004544
- 负责人:
- 金额:$ 45.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Wireless infrastructure is steadily evolving into wireless access for all humans and most devices, from 5G to Internet-of-Things. This widespread access creates the expectation of custom and adaptive services from the personal network to the backbone network. In addition, challenges of scale and interoperability exist across networks, applications and services, both requiring an effective wireless network management infrastructure. At the same time, there has been a rising imperative to capitalize on the current technological advancements to address to the most pressing issues surrounding construction and the built environment to increase health and safety; productivity; and sustainability. This Elements project combines the areas of computer science, electrical engineering, and construction and building to develop a robust cyberinfrastructure (CI) service for construction research, as well as applications that utilize state-of-the-art emerging technologies and software to address the current challenges faced by the construction industry. The major contribution of the project is the development of the IoT-ACRES (IoT-Applied Construction Research and Education Services) system, a central, interoperable framework hub that can incorporate a variety of heterogeneous sensors, technology, software, managed by a software-defined network infrastructure and optimized by machine learning and artificial intelligence techniques. The prototype system will help to augment the works and/or safety manager's ability to detect hazards and subsequently improve safety performance in construction, which is one of the greatest challenges faced by the construction industry. In addition, the framework can be used to increase autonomy in applications that require simultaneous tracking of multiple entities (people, vehicles, equipment, etc.), detecting multiple objects of interests, analyzing real-time biometric data, and making autonomous decisions. Results will be disseminated to industry and research communities through publications and presentations at workshops, training courses and online professional certification programs. The project will also be used as a research, education, and training tool to (1) mentor and teach K-12 students about STEM, and (2) to develop and enhance courses to educate the current and next generations of students, users, and workers, on the latest technology and the latest approaches to cyber security techniques. This project develops a robust cyberinfrastructure (CI) system and service for construction research and applications to address the current challenges faced in the construction industry. The outcomes and services that this proposal aims to provide are 1) a distributed SDN-managed and AI-assisted IoT-based system that can be adapted and extended based on needs of the research and application; 2) identification of the data and data security requirements needed to address the challenges in the construction industry and potential technologies that can provide those data; 3) evaluation of reliable real-time multi-sensor fusion techniques for ruggedness, usability, and limitations of IoT-based components deployed in the dynamic construction environments; 4) robust prototype system for real-time safety monitoring based on the IoT system framework; and 5) recommendations of potential configurations of the system with the appropriate technology and sensors to meet the needs of the application. The empirical data resulting will be delivered through yearly NSF reports on the progress and findings, journal publications of the intellectual merit and scientific findings, and conference proceedings discussing the broader impacts and future research objectives. The framework of the hardware and software, including an instructional manual will also be published. The software will be made available through request via a project website, open source posts, and conference and workshop dissemination. The project will explore the use of various delivery mechanisms, such as NSF's eXtreme Science and Engineering Discovery Environment (XSEDE). The IoT-ACRES will utilize IBM IoT Continuous Engineering and Cloud Computing Servers Cloud (e.g. Amazon AWS) for the data analysis and performance metrics. This novel convergence research project will ultimately advance the development of sustainable CI communities and stewardships of sustainable CI services that can enhance productivity and accelerate innovation in science and engineering. This work will advance practices of safety controls by developing a tool for safety monitoring on construction sites, presented to safety managers with interfaces that visualize, and report real-time safety hazards. Significantly, it will address fundamental research challenges in computer vision and construction management: improving context-based object recognition and tracking; and formalizing rules for integrating visual, textual, biometric data to proactively recognize safety hazards.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
无线基础设施正在稳步发展为所有人和大多数设备的无线接入,从5G到物联网。这种广泛的接入产生了从个人网络到骨干网络的定制和自适应服务的期望。此外,网络、应用程序和服务之间存在规模和互操作性的挑战,这两者都需要有效的无线网络管理基础设施。与此同时,利用当前的技术进步来解决围绕建筑和建筑环境的最紧迫问题,以提高健康和安全,生产力和可持续性,这一点越来越重要。该项目结合了计算机科学,电气工程和建筑领域,为建筑研究开发了强大的网络基础设施(CI)服务,以及利用最先进的新兴技术和软件来解决建筑行业当前面临的挑战的应用程序。该项目的主要贡献是开发了物联网应用建筑研究和教育服务(IoT-ACRES)系统,这是一个中央可互操作的框架中心,可以整合各种异构传感器,技术,软件,由软件定义的网络基础设施管理,并通过机器学习和人工智能技术进行优化。原型系统将有助于增强工程和/或安全经理检测危险的能力,并随后提高建筑安全性能,这是建筑业面临的最大挑战之一。此外,该框架可用于增加需要同时跟踪多个实体(人、车辆、设备等)的应用中的自主性,检测多个感兴趣的对象,分析实时生物特征数据,并做出自主决策。研究成果将通过出版物和在研讨会、培训课程和在线专业认证项目上的演讲传播给工业界和研究界。该项目还将被用作研究,教育和培训工具,以(1)指导和教授K-12学生有关STEM的知识,以及(2)开发和加强课程,以教育当前和下一代学生,用户和工人,最新技术和最新的网络安全技术方法。该项目为建筑研究和应用开发了一个强大的网络基础设施(CI)系统和服务,以应对建筑行业当前面临的挑战。该提案旨在提供的成果和服务是:1)分布式SDN管理和人工智能辅助的物联网系统,可以根据研究和应用的需求进行调整和扩展; 2)识别解决建筑行业挑战所需的数据和数据安全要求以及可以提供这些数据的潜在技术; 3)评估可靠的实时多传感器融合技术在动态施工环境中部署的基于物联网的组件的耐用性、可用性和局限性; 4)基于物联网系统框架的用于实时安全监测的鲁棒原型系统;以及5)具有适当技术和传感器的系统的潜在配置的建议,以满足应用的需要。由此产生的经验数据将通过NSF年度进展和发现报告,学术价值和科学发现的期刊出版物以及讨论更广泛影响和未来研究目标的会议记录提供。还将出版硬件和软件的框架,包括一本指导手册。该软件将通过项目网站、开放源码帖子以及会议和讲习班传播的方式提供。该项目将探索各种交付机制的使用,例如NSF的极限科学和工程发现环境(XSEDE)。IoT ACRES将利用IBM IoT Continuous Engineering和云计算服务器云(例如Amazon AWS)进行数据分析和性能指标。这一新颖的融合研究项目将最终推动可持续CI社区的发展和可持续CI服务的管理,从而提高生产力并加速科学和工程创新。这项工作将通过开发建筑工地安全监测工具,向安全管理人员提供可视化界面,并实时报告安全隐患,从而推进安全控制实践。重要的是,它将解决计算机视觉和施工管理方面的基础研究挑战:改进基于上下文的对象识别和跟踪;正式制定整合视觉、文本和生物识别数据的规则,以主动识别安全隐患。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enabling intelligent jobsites: advancing the integration of construction 4.0 devices within the connected jobsite
实现智能工地:推进互联工地内建筑 4.0 设备的集成
- DOI:10.35490/ec3.2023.296
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Morman, Kyle;Costin, Aaron;McNair, Janise
- 通讯作者:McNair, Janise
Poster Abstract: An IoT Mesh Network for a Smart Refrigeration Monitoring System
海报摘要:用于智能制冷监控系统的物联网网状网络
- DOI:10.1145/3576842.3589174
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Morman, Kyle;Dexter, David;Costin, Aaron;Mcnair, Janise
- 通讯作者:Mcnair, Janise
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Costin其他文献
Aaron Costin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Costin', 18)}}的其他基金
I-Corps: Internet of things for Construction Safety
I-Corps:物联网促进建筑安全
- 批准号:
2309014 - 财政年份:2023
- 资助金额:
$ 45.51万 - 项目类别:
Standard Grant
相似海外基金
CC* Campus Compute: UTEP Cyberinfrastructure for Scientific and Machine Learning Applications
CC* 校园计算:用于科学和机器学习应用的 UTEP 网络基础设施
- 批准号:
2346717 - 财政年份:2024
- 资助金额:
$ 45.51万 - 项目类别:
Standard Grant
CC* Planning: Strengthening Central Michigan University's Cyberinfrastructure
CC* 规划:加强中央密歇根大学的网络基础设施
- 批准号:
2345749 - 财政年份:2024
- 资助金额:
$ 45.51万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 45.51万 - 项目类别:
Standard Grant
CC* Networking Infrastructure: Building a Scalable and Polymorphic Cyberinfrastructure for Diverse Research and Education Needs at Illinois State University
CC* 网络基础设施:为伊利诺伊州立大学的多样化研究和教育需求构建可扩展和多态的网络基础设施
- 批准号:
2346712 - 财政年份:2024
- 资助金额:
$ 45.51万 - 项目类别:
Standard Grant
Travel: Support for U.S. Students to Receive Training on Research Cyberinfrastructure at the 2024 Annual Modeling and Simulation Conference (ANNSIM)
旅行:支持美国学生在 2024 年年度建模与仿真会议 (ANNSIM) 上接受研究网络基础设施培训
- 批准号:
2425778 - 财政年份:2024
- 资助金额:
$ 45.51万 - 项目类别:
Standard Grant
CICI: TCR: Transitioning Differentially Private Federated Learning to Enable Collaborative, Intelligent, Fair Skin Disease Diagnostics on Medical Imaging Cyberinfrastructure
CICI:TCR:转变差异化私有联合学习,以实现医学影像网络基础设施上的协作、智能、公平的皮肤病诊断
- 批准号:
2319742 - 财政年份:2024
- 资助金额:
$ 45.51万 - 项目类别:
Standard Grant
Data-enabled Pathways to Equity in Cyberinfrastructure Utilization for Scientific Discovery
利用数据实现科学发现的网络基础设施公平之路
- 批准号:
2346631 - 财政年份:2024
- 资助金额:
$ 45.51万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403313 - 财政年份:2024
- 资助金额:
$ 45.51万 - 项目类别:
Standard Grant
Conference: Cyberinfrastructure Leadership Academy: Team Science and Grand Challenges
会议:网络基础设施领导学院:团队科学和重大挑战
- 批准号:
2414440 - 财政年份:2024
- 资助金额:
$ 45.51万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Small: Inclusive Cyberinfrastructure and Machine Learning Training to Advance Water Science Research
合作研究:网络培训:实施:小型:包容性网络基础设施和机器学习培训,以推进水科学研究
- 批准号:
2320980 - 财政年份:2024
- 资助金额:
$ 45.51万 - 项目类别:
Standard Grant