Collaborative Research: Improving contact fatigue and wear properties using graded nanostructured surfaces in metallic materials

合作研究:使用金属材料中的分级纳米结构表面改善接触疲劳和磨损性能

基本信息

  • 批准号:
    2004556
  • 负责人:
  • 金额:
    $ 24.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Non-technical summaryGraded nanostructured metallic materials, with grain-size gradients ranging from the nanometer-level in the surface regions to the micrometer-level in the interior regions, are a novel class of materials that have exhibited promise for exceptional mechanical properties. However, at present, there is very limited understanding of the surface wear resistance and contact fatigue behavior of these nano-graded metals and alloys. Unlike in the case of materials with a uniform grain-size, where the surface region provides only one type of surface wear protection, in the nano-graded materials, the surface region has the potential to provide two types of protections by increasing the resistance to both damage initiation and subsequent damage progression into the interior of the material. Through modeling and experiments, this collaborative project between Stony Brook and MIT, seeks to obtain a scientific understanding of damage initiation and damage evolution processes in metallic materials with graded nanostructured surfaces. By advancing the current understanding of the mechanisms associated with surface wear protection and contact fatigue resistance of graded nanostructured materials, this project facilitates the development of a road-map for the reliable introduction of novel materials in the multi-billion dollar tribology industry that includes aircraft, automotive, electronic packaging, nuclear energy, and biomedical applications. Technical SummaryThis project is focused on obtaining a fundamental understanding of the contact fatigue crack resistance in graded nanostructured metallic materials. In particular, the influence of dislocation activities that are dictated by grain-size gradients and yield strength gradients, on crack tip blunting and crack tip shielding, is assessed. An adhesion-based analytical modeling framework is developed to predict the conditions for contact fatigue crack initiation in graded nanomaterials. A dislocation pile-up based multi-scale plasticity model is implemented in finite elements to predict contact fatigue damage evolution pathways in graded nanostructured metals and alloys. Contact fatigue and wear experiments are designed to provide a quantitative assessment of contact fatigue and wear behavior of graded nanomaterials and validation for the analytical and numerical models developed, while microstructural observations identify deformation mechanisms that contribute to contact fatigue resistance and wear damage protection. A new design paradigm for engineering functionally-graded nanomaterials that provides enhancements in contact fatigue damage resistance, beyond the classical limit that has been traditionally obtained in materials with (mostly uniform) surface modified layers, is identified.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结的纳米结构金属材料,晶粒大小的梯度从地面区域的纳米级层到内部区域的微米水平,是一类新型的材料,它们对出色的机械性能表现出了希望。但是,目前,对这些纳米级金属和合金的表面耐耐受性和接触疲劳行为的了解非常有限。与具有均匀晶粒大小的材料的情况不同,在纳米级材料中,表面区域仅提供一种类型的表面磨损保护,而表面区域有可能通过增加对损伤起始的抵抗力和随后的损害进展,从而提供两种类型的保护措施。通过建模和实验,Stony Brook和MIT之间的合作项目旨在获得对具有分级纳米结构表面的金属材料中的损伤开始和损伤进化过程的科学理解。通过促进对表面磨损保护和接触型纳米结构材料的接触疲劳抗性的当前理解,该项目有助于开发道路图,以在数十亿美元的摩擦学行业中可靠地引入新型材料,其中包括飞机,自动,自动化,电子包装,核能,核能,核能以及生物医学应用。技术摘要项目的重点是对分级纳米结构金属材料的接触疲劳裂纹抗性获得基本了解。特别是,评估了由晶粒大小梯度和产量强度梯度决定的位错活动的影响,对裂纹尖端钝和裂纹尖端屏蔽的影响。开发了基于粘附的分析建模框架,以预测分级纳米材料中接触疲劳裂纹启动的条件。在有限的元素中实现了基于位错堆积的多尺度可塑性模型,以预测分级纳米结构金属和合金中的接触疲劳损伤进化途径。接触疲劳和磨损实验旨在提供对纳米材料的接触疲劳和磨损行为的定量评估,并为开发的分析和数值模型进行验证,而微结构观察结果则确定了有助于接触疲劳阻力和磨损损害保护的变形机制。确定了一个新的设计范式,用于工程级的纳米材料,可在传统上(主要是均匀的)表面修饰层获得的经典限制提供接触疲劳损伤性的增强功能,超出了经典的限制。该奖项反映了NSF的法定任务,并通过评估了基金会的智力效果,反映了NSF的法定任务。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ming Dao其他文献

Multiscale Simulation of Malaria-Infected Erythrocytes and Spherocytes of Hereditary Spherocytosis Passing Endothelial Slits in the Spleen
  • DOI:
    10.1016/j.bpj.2011.11.3066
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Zhangli Peng;Igor Pivkin;Ming Dao
  • 通讯作者:
    Ming Dao
Computer vision-enhanced microfluidic assay for evaluating the anti-sickling efficacy of sickle cell disease treatments
  • DOI:
    10.1016/j.bpj.2023.11.2664
  • 发表时间:
    2024-02-08
  • 期刊:
  • 影响因子:
  • 作者:
    Yuhao Qiang;Ming Dao
  • 通讯作者:
    Ming Dao
MIT Open Access Articles Probing the Cytoadherence of Malaria Infected Red Blood Cells under Flow
麻省理工学院开放获取文章探讨流动条件下感染疟疾的红细胞的细胞粘附
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaofeng Xu;Artem K. Efremov;Ang Li;Lipeng Lai;Ming Dao;Chwee Teck Lim;Jianshu Cao
  • 通讯作者:
    Jianshu Cao
Structural stability of polymer matrix composite panels in fire
  • DOI:
    10.1016/j.marstruc.2009.04.001
  • 发表时间:
    2009-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Pei Gu;Ming Dao;R.J. Asaro
  • 通讯作者:
    R.J. Asaro

Ming Dao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ming Dao', 18)}}的其他基金

Collaborative Research: DMREF: Developing Damage Resistant Materials for Hydrogen Storage and Large-scale Transport.
合作研究:DMREF:开发用于储氢和大规模运输的抗损伤材料。
  • 批准号:
    2119076
  • 财政年份:
    2021
  • 资助金额:
    $ 24.67万
  • 项目类别:
    Continuing Grant
I-Corps: Improving Acoustophoretic-based Cell Sorting Technologies
I-Corps:改进基于声泳的细胞分选技术
  • 批准号:
    1646947
  • 财政年份:
    2016
  • 资助金额:
    $ 24.67万
  • 项目类别:
    Standard Grant

相似国自然基金

通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
  • 批准号:
    12305261
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
面向超级计算机的改进粒子群算法在大规模WSN中的应用研究
  • 批准号:
    62372495
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于云聚类的气溶胶-云相互作用模式评估改进研究
  • 批准号:
    42375073
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
智能互联产品动态质量过程控制与迭代改进方法研究
  • 批准号:
    72371183
  • 批准年份:
    2023
  • 资助金额:
    39 万元
  • 项目类别:
    面上项目
WRF-CHIMERE双向耦合模式中沙尘矿物组分的云凝结核和冰核活化模块改进与开发研究
  • 批准号:
    42305171
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Improving Upper Division Physics Education and Strengthening Student Research Opportunities at 14 HSIs in California
合作研究:改善加州 14 所 HSI 的高年级物理教育并加强学生研究机会
  • 批准号:
    2345092
  • 财政年份:
    2024
  • 资助金额:
    $ 24.67万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving Upper Division Physics Education and Strengthening Student Research Opportunities at 14 HSIs in California
合作研究:改善加州 14 所 HSI 的高年级物理教育并加强学生研究机会
  • 批准号:
    2345093
  • 财政年份:
    2024
  • 资助金额:
    $ 24.67万
  • 项目类别:
    Standard Grant
SBP: Collaborative Research: Improving Engagement with Professional Development Programs by Attending to Teachers' Psychosocial Experiences
SBP:协作研究:通过关注教师的社会心理体验来提高对专业发展计划的参与度
  • 批准号:
    2314254
  • 财政年份:
    2023
  • 资助金额:
    $ 24.67万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving Worker Safety by Understanding Risk Compensation as a Latent Precursor of At-risk Decisions
合作研究:通过了解风险补偿作为风险决策的潜在前兆来提高工人安全
  • 批准号:
    2326937
  • 财政年份:
    2023
  • 资助金额:
    $ 24.67万
  • 项目类别:
    Continuing Grant
Collaborative Research: Improving Model Representations of Antarctic Ice-shelf Instability and Break-up due to Surface Meltwater Processes
合作研究:改进地表融水过程导致的南极冰架不稳定和破裂的模型表示
  • 批准号:
    2213704
  • 财政年份:
    2023
  • 资助金额:
    $ 24.67万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了